13 research outputs found

    A strategy to identify breakdown location in MITICA test facility: results of high voltage test campaign

    Full text link
    The Acceleration Grid Power Supply of the MITICA test facility in Padova (Italy) is currently under commissioning. The power conversion system, the DC generator, and the High Voltage equipment have been individually commissioned, whereas the integration tests are ongoing. It is a challenging process due to the unconventional application, to the variety of different electrical technologies involved and to the complexity of the interfaces. During the integrated tests of the power supplies the achievement of 700kV stable operation has been demonstrated for the first time in a Neutral Beam Injector, but an unexpected event occurred, most likely a breakdown in the HV part, which resulted in a fault of the DC generator. A subsequent test using an auxiliary power supply was performed to check the voltage withstanding capability of the HV plant, but another breakdown occurred at around 1MV. This paper describes the activity performed to identify the location of the breakdowns affecting the integrated tests. A test campaign has been devised with increased diagnostic capabilities and specific strategy conceived to trigger intentional breakdowns in specific locations and collect measurement patterns for different cases. The results of the campaign will be presented and the current understanding of the issue will be described, with a view on future tests and further improvements of diagnostics

    Partial Discharges detection in 1 MV power supplies in MITICA experiment, the ITER Heating Neutral Beam Injector prototype

    Full text link
    MITICA (Megavolt ITER Injector & Concept Advancement), the full scale prototype of ITER Heating Neutral Beam, is under realization at the Neutral Beam Test Facility (Padova, Italy). It is designed to deliver 16.5 MW to ITER plasma, obtained by accelerating negative Deuterium ions up to 1 MeV for a total ion current of 40 A and then neutralized. MITICA Acceleration Power Supply is composed of several non-standard equipment, beyond industrial standard for insulation voltage level (-1 MVdc) and dimensions. Voltage withstand tests (up to 1.265 MVdc) have been performed in five subsequent steps (from 2018 to 2019), according to the installation progress, after connecting equipment belonging to different procurements. During integrated commissioning, started in 2021, two breakdowns occurred in a position of the HV plant not still identified, so they could be occurred either in air or in SF6. To identify the locations of possible weak insulation points, the existing diagnostics for partial discharge detection (the precursor of breakdowns) as a first step have been improved on air-insulated parts by consisting in a set of instrumentation, like capacitive probes and off-the-shelf instruments for AC application (acoustic and electromagnetic sensors). The paper deals with the instruments qualification to assess their suitability for DC usage and then with the investigation performed in MITICA, in particular: 1) sensitivity assessment campaign, with artificially produced corona effect to identify the minimum threshold of each diagnostics 2) voltage application to MITICA plant, moving the instrumentation around equipment and increasing progressively the voltage looking for corona phenomena to identify possible weak insulation points.Comment: Nine pages, twelve figures, accepted manuscript of a paper published in Fusion Engineering and Desig

    Overview on electrical issues faced during the SPIDER experimental campaigns

    Full text link
    SPIDER is the full-scale prototype of the ion source of the ITER Heating Neutral Beam Injector, where negative ions of Hydrogen or Deuterium are produced by a RF generated plasma and accelerated with a set of grids up to ~100 keV. The Power Supply System is composed of high voltage dc power supplies capable of handling frequent grid breakdowns, high current dc generators for the magnetic filter field and RF generators for the plasma generation. During the first 3 years of SPIDER operation different electrical issues were discovered, understood and addressed thanks to deep analyses of the experimental results supported by modelling activities. The paper gives an overview on the observed phenomena and relevant analyses to understand them, on the effectiveness of the short-term modifications provided to SPIDER to face the encountered issues and on the design principle of long-term solutions to be introduced during the currently ongoing long shutdown.Comment: 8 pages, 12 figures. Presented at SOFT 202

    1 MV power supplies integration issues in MITICA experiment, the ITER Heating Neutral Beam Injector prototype

    No full text
    MITICA, the full scale prototype of ITER Heating Neutral Beam Injector required to heat up ITER plasma with 16.5 MW injected power, is under realization at the Neutral Beam Test Facility (NBTF) in Padova (Italy) with the contributions of JApanese and EUropean Domestic Agencies (JADA and EUDA, respectively). The objective of MITICA is to produce a 16.5 MW neutral beam, obtained by accelerating negative Deuterium ions up to 1 MeV for a total ion current of 40 A and then neutralized.MITICA Power Supply (PS), installed from 2016 to 2019, includes several non-standard equipment, with ratings well beyond the present industrial standard for insulation voltage level (-1 MVdc) and dimensions:- the Acceleration Grid Power Supply (AGPS), composed of five DC Generators (DCG) rated for -200kVdc each, connected in series to produce -1 MVdc acceleration voltage;- the Ion Source and Extraction Power Supply system (ISEPS);- the large air insulated Faraday cage (High Voltage Deck1, HVD1) hosting ISEPS and connected to the Transmission Line (TL) through an air-to-SF6 Bushing (High Voltage Bushing Assembly, HVBA);- a 100 m gas (SF6) insulated TL, connecting AGPS and ISEPS to the beam source installed inside the vacuum vessel through- the SF6-to-vacuum HV Bushing (HVB).The definition of the interfaces both between components supplied by the different DA’s and towards the buildings has been studied and finalized as far as possible during the design phase. Nevertheless, during the installation phase some issues emerged and had to be solved, minimizing modifications of the components already manufactured. The paper deals with the experience gained during the installation activities, focusing on solutions to interface the aforementioned equipment with NBTF buildings according to the stringent dimensional requirements and to the electrical insulation issues of the TL from the buildings. In particular, the solutions adopted to realize the electrical and mechanical interfaces between the TL and the HVBA are described in detail
    corecore