4 research outputs found

    Tipos de tensiones mecánica y térmica en la primera etapa de la pala del rotor de una turbina

    Get PDF
    Introduction: In this paper, the simulation of first stage of low pressure turbine for Nasiriya Power Plant was done to study the aerodynamic characteristic of steam along stage at load 70 MW, also the two types of mechanical stresses on the first stage rotor blade were studied in this paper. Materials and Methods:The material of blade was X20Cr13 stainless steel grade 1.4021. The first type of mechanical stresses which due to the steam pressure on the blade was analyzed. The seconds types of mechanical stresses that the centrifugal stresses on the blade. The AutoCAD software code was used for modeling the turbine stage, the dimensions and operational conditions were obtained practically from Nasiriya power plant and ANSYS (15.0) software was used to make simulate the turbine. Results and Discussion: The results showed that maximum steam velocity occurred at trailing edge of stationary blades and leading edge of rotating blades, also the maximum stresses occurred at the leading edge and trailing edge of root blade, the stresses due to the effect of centrifugal force is larger than the stresses due the pressure force. Conclusions: The maximum deformation occurred at tip of blade and minimum deformation depicted at root of blade

    Modeling of Pollutants Prediction from Fuel Burning in Oil and Gas Refineries

    Get PDF
    Oxides of nitrogen (NO + NO2 , (NOx)) are emitted from refineries, not only contribute to the production of photochemical smog at ground level but also cause damage to plant life and add to the problem of acid rain. The small amounts of prompt NO produced in the furnace chambers and oil refineries because the formation of NOx can be attributed to four distinct chemical kinetic processes: thermal NOx formation, prompt NOx formation, fuel NOx formation, and intermediate N2O. In this paper, the portions of pollutants that resulted in fuel burning (liquid or gas) in oil and gas refinery were studied by modeling of emitted gases in furnace chamber. The case study at Nassiriya power plant with different loads (70 – 210) MW was studied. The method of finite volume was studied to predict the pollutant portions by using FLUENT computer code (FLUENT is one of largest codes of computer programs which solve thousands of flow and combustion cases. The case study was drawn graphically then imported to solve by FLUENT). These types of pollution species are NOx and SOx as the important air pollutant influenced the human health. The numerical analysis in calculating the pollutants of chamber gave the findings of crude oil emission in combustion is higher than that at using gaseous fuel.So, the methods of decreasing NOx and SOx pollution by water injection and exhaust gas recirculation are used in refinery operation were presente

    USING PARTICLE SWARM OPTIMIZATION TO FIND OPTIMAL SIZING OF PV-BS AND DIESEL GENERATOR

    Get PDF
    This paper explores the sizing optimization of stand -alone hybrid energy system (HES) in southern Iraq (Thi Qar province) for supply stand-alone households by the electricity. HES consist of three components (solar cell (PV), diesel generator (DG) and battery storage (BS)). Particle swarm optimization (PSO) used in this study for find optimal sizing of the HES to minimizing multi-objective, first objective is to minimizing the total system cost (TSC) that lead to minimizing cost of energy (COE). Second objective is to minimizing total emission CO2 (TECO2). The constraint of the optimization is the reliability (100 %) mean continuous provide the load demand by the electricity. The results of the optimization show the ability the algorithm to minimizing the multi-objective with continuous supply the load by the electricity through life cycle of the project (25) years
    corecore