141 research outputs found

    Elastic energy loss with respect to the reaction plane in a Monte-Carlo model

    Full text link
    We present a computation of π0\pi^0 nuclear modification factor with respect to the reaction plane in Au+Au collisions at sNN=200\sqrt{s_{NN}}=200 GeV, based on a Monte-Carlo model of elastic energy loss of hard partons traversing the bulk hydrodynamical medium created in ultrarelativistic heavy-ion collisions. We find the incoherent nature of elastic energy loss incompatible with the measured data.Comment: 5 pages, 2 figure

    A systematic comparison of jet quenching in different fluid-dynamical models

    Full text link
    Comparing four different (ideal and viscous) hydrodynamic models for the evolution of the medium created in 200 AGeV Au-Au collisions, combined with two different models for the path length dependence of parton energy loss, we study the effects of jet quenching on the emission-angle dependence of the nuclear suppression factor R_AA(phi) and the away-side per trigger yield I_AA(phi). Each hydrodynamic model was tuned to provide a reasonable description of the single-particle transverse momentum spectra for all collision centralities, and the energy loss models were adjusted to yield the same pion nuclear suppression factor in central Au-Au collisions. We find that the experimentally measured in-plane vs. out-of-plane spread in R_AA(phi) is better reproduced by models that shift the weight of the parton energy loss to later times along its path. Among the models studied here, this is best achieved by energy loss models that suppress energy loss at early times, combined with hydrodynamic models that delay the dilution of the medium density due to hydrodynamic expansion by viscous heating. We were unable to identify a clear tomographic benefit of a measurement of I_AA(phi) over that of R_AA(phi).Comment: 17 pages, 11 figure

    Thermal photons from fluctuating initial conditions

    Full text link
    Event-by-event fluctuations of initial QCD-matter density produced in heavy-ion collisions at RHIC enhance the production of thermal photons significantly in the region 2≤pT≤42 \le p_T \le 4 GeV/cc compared to a smooth initial-state averaged profile in the ideal hydrodynamic calculation. This enhancement is a an early time effect due to the presence of hotspots or over-dense regions in the fluctuating initial state. The effect of fluctuations is found to be stronger in peripheral than in central collisions.Comment: 4 pages, 3 figures. Talk given at Quark Matter 2011, 22-28 May 2011, Annecy, Franc
    • …
    corecore