22 research outputs found

    Development of N/P AlGaAs free-standing top solar cells for tandem applications

    Get PDF
    The combination of a free standing AlGaAs top solar cell and an existing bottom solar cell is the highest performance, lowest risk approach to implementing the tandem cell concept. The solar cell consists of an AlGaAs substrate layer, an AlGaAs base layer, an AlGaAs emitter, and an ultra-thin AlGaAs window layer. The window layer is compositionally graded which minimizes reflection at the window layer/emitter interface and creates a built-in electric field to improve quantum response in the blue region of the spectrum. Liquid phase epitaxy (LPE) is the only viable method to produce this free standing top solar cell. Small (0.125 sq cm), transparent p/n AlGaAs top solar cells were demonstrated with optimum bandgap for combination with a silicon bottom solar cell. The efficiency of an AlGaAs/Si stack using the free standing AlGaAs device upon an existing silicon bottom solar cell is 24 pct. (1X, Air Mass Zero (AM0). The n/p AlGaAs top solar cell is being developed in order to facilitate the wiring configuration. The two terminal tandem stack will retain fit, form, and function of existing silicon solar cells. Progress in the development of large area (8 and 16 sq cm), free standing AlGaAs top solar cells is discussed

    Development of a lightweight, light-trapped, thin GaAs solar cell for spacecraft applications

    Get PDF
    This paper describes ultra-lightweight, high performance, thin, light trapping GaAs solar cells for advanced space power systems. The device designs can achieve 24.5 percent efficiency at AMO and 1X conditions, corresponding to a power density of 330 W/m2. A significant breakthrough lies in the potential for a specific power of 2906 W/kg because the entire device is less than 1.5 microns thick. This represents a 440 percent improvement over conventional 4-mil silicon solar cells. In addition to being lightweight, this thin device design can result in increased radiation tolerance. The attachment of the cover glass support to the front surface has been demonstrated by both silicone and electrostatic bonding techniques. Device parameters of 1.002 volts open-circuit voltage, 80 percent fill factor, and a short-circuit current of 24.3 mA/sq cm have been obtained. This demonstrates a conversion efficiency of 14.4 percent resulting in a specific power of 2240 W/kg. Additionally, this new technology offers an alternative approach for enabling multi-bandgap solar cells and high output space solar power devices. The thin device structure can be applied to any 3-5 based solar cell application, yielding both an increase in specific power and radiation tolerance

    Common Variants at 9p21 and 8q22 Are Associated with Increased Susceptibility to Optic Nerve Degeneration in Glaucoma

    Get PDF
    Optic nerve degeneration caused by glaucoma is a leading cause of blindness worldwide. Patients affected by the normal-pressure form of glaucoma are more likely to harbor risk alleles for glaucoma-related optic nerve disease. We have performed a meta-analysis of two independent genome-wide association studies for primary open angle glaucoma (POAG) followed by a normal-pressure glaucoma (NPG, defined by intraocular pressure (IOP) less than 22 mmHg) subgroup analysis. The single-nucleotide polymorphisms that showed the most significant associations were tested for association with a second form of glaucoma, exfoliation-syndrome glaucoma. The overall meta-analysis of the GLAUGEN and NEIGHBOR dataset results (3,146 cases and 3,487 controls) identified significant associations between two loci and POAG: the CDKN2BAS region on 9p21 (rs2157719 [G], OR = 0.69 [95%CI 0.63–0.75], p = 1.86×10−18), and the SIX1/SIX6 region on chromosome 14q23 (rs10483727 [A], OR = 1.32 [95%CI 1.21–1.43], p = 3.87×10−11). In sub-group analysis two loci were significantly associated with NPG: 9p21 containing the CDKN2BAS gene (rs2157719 [G], OR = 0.58 [95% CI 0.50–0.67], p = 1.17×10−12) and a probable regulatory region on 8q22 (rs284489 [G], OR = 0.62 [95% CI 0.53–0.72], p = 8.88×10−10). Both NPG loci were also nominally associated with a second type of glaucoma, exfoliation syndrome glaucoma (rs2157719 [G], OR = 0.59 [95% CI 0.41–0.87], p = 0.004 and rs284489 [G], OR = 0.76 [95% CI 0.54–1.06], p = 0.021), suggesting that these loci might contribute more generally to optic nerve degeneration in glaucoma. Because both loci influence transforming growth factor beta (TGF-beta) signaling, we performed a genomic pathway analysis that showed an association between the TGF-beta pathway and NPG (permuted p = 0.009). These results suggest that neuro-protective therapies targeting TGF-beta signaling could be effective for multiple forms of glaucoma

    Rhythmic entrainment: Why humans want to, fireflies can’t help it, pet birds try, and sea lions have to be bribed

    No full text
    corecore