161 research outputs found

    Riang-Lang vocabulary: compiled from the materials collected by G. H. Luce

    No full text
    This is a facsimile edition of the Riang-Lang vocabulary prepared by late Prof. Harry Shorto in 1964, and which had until now only circulated privately as rather poor quality photocopies. Prof. Shorto complied the vocabulary in the context of preparing the first draft of his A Mon-Khmer Comparative Dictionary (posthumously published in 2006 by Pacific Linguistics), by compiling and analyzing data from the extensive notes of Gordon H. Luce (now archived in the manuscript collection of the Australian National Library). Luce’s notes were in turn based on his own field work in Burma and on the (now lost) substantial index card compilation of Prof. Otto Blagden, who preceded both Shorto and Luce at the University of London’s School of Oriental and African studies. The entries in this Riang-Lang are written in Shorto’s phonemic transcription, they are glossed in English, and are richly augmented with etymological commentary that includes citations from Shan, Burmese, many Austroasiatic languages, and Shorto’s preliminary Proto-Mon-Khmer reconstruction. The present word list was found among boxes kept by his daughter Anna, which she kindly donated to the present series editor (Sidwell) for the purposes of publication and archiving. The images were created by scanning the original pages at 200 DPI in greyscaleAustralian National University, College of Asia and the Pacifi

    Postcard: Hand Written Message from a Business

    Get PDF
    This black and white printed postcard contains correspondence from a company to a customer replying about a request for goods. Handwriting is on the front and the back of the card.https://scholars.fhsu.edu/tj_postcards/2026/thumbnail.jp

    Trace metal distributions in sulfide scales of the seawater-dominated Reykjanes geothermal system: Constraints on sub-seafloor hydrothermal mineralizing processes and metal fluxes

    Get PDF
    Highlights • Predictable trace element enrichments and depletions in the Reykjanes system. • Boiling exerts a major influence on the enrichment of metals. • High concentrations of Au and Ag and Pb indicate accumulation in reservoir fluids. • Three quarters of the metal budget is deposited at depth or in the upflow zone. Abstract Mineral precipitation in the seawater-dominated Reykjanes geothermal system on the Mid-Atlantic Ridge, Iceland is caused by abrupt, artificially induced, pressure and temperature changes as deep high-temperature liquids are drawn from reservoir rocks up through the geothermal wells. Sulfide scales within these wells represent a complete profile of mineral precipitation through a seafloor hydrothermal system, from the deep reservoir to the low-temperature silica-rich surface discharge. Mineral scales have formed under a range of conditions from high pressures and temperatures at depth (>2 km) to boiling conditions in the upflow zone and at the surface. Consistent trace element enrichments, similar to those in black smoker chimneys, are documented: Cu, Zn, Cd, Co, Te, V, Ni, Mo, W, Sn, Fe and S are enriched at higher pressures and temperatures in the deepest scales, Zn and Cu, Bi, Pb, Ag, As, Sb, Ga, Hg, Tl, U, and Th are enriched at lower temperatures and pressures nearer to the surface. A number of elements (e.g., Co, Se, Cd, Zn, Cu, and Au) are deposited in both high- and low-pressure scales, but are hosted by distinctly different minerals. Other trace elements, such as Pb, Ag, and Ga, are strongly partitioned into low-temperature minerals, such as galena (Pb, Ag) and clays (Ga). Boiling and destabilization of metal-bearing aqueous complexes are the dominant control on the deposition of most metals (particularly Au). Other metals (e.g., Cu and Se) may also have been transported in the vapor phase. Very large enrichments of Au, Ag and Pb in the scales (e.g., 948 ppm Au, 23,200 ppm Ag, and 18.8 wt.% Pb) versus average concentrations in black smoker chimneys likely reflect that some elements are preferentially deposited in boiling systems. A mass accumulation of 5.7 t/yr of massive sulfide was calculated for one high-temperature production well, equating to metal fluxes of 1.7 t/yr Zn, 0.3 t/yr Cu, 23 kg/yr Pb, 4.1 kg/yr Ag, and 0.5 kg/yr Au. At least three quarters of the major and trace element load is precipitated within the well before reaching the surface. We suggest that a similar proportion of metals may be deposited below the seafloor in submarine hydrothermal systems where significant boiling has occurred. Mass accumulation estimations over the lifetime of the Reykjanes system may indicate significant enrichment of Zn, Pb, Au, and Ag relative to both modern and ancient mafic-dominated seafloor massive sulfide deposits, and highlights the potential for metal enrichment and accumulation in the deep parts of geothermal systems

    The endocrine disruptor 17 beta-trenbolone alters the relationship between pre- and post-copulatory sexual traits in male mosquitofish (Gambusia holbrooki)

    Get PDF
    It is now well-established that reproduction in wildlife can be disrupted by anthropogenic environmental changes, such as chemical pollution. However, very little is known about how these pollutants might affect the interplay between pre-and post-copulatory mechanisms of sexual selection. Here, we investigated the impacts of 21-day exposure of male eastern mosquitofish (Gambusia holbrooki) to a field-realistic level (average measured concentration: 11 ng/L) of the endocrine-disrupting chemical 17S-trenbolone (17S-TB) on pre-and post-copulatory reproductive traits. We examined male reproductive behaviour by testing the time spent near a female behind a partition, as well as the number of copulation attempts made, and the time spent chasing a female in a free-swimming context. Sperm traits were also assayed for all males. We found that exposure of male fish to 17S-TB altered the relationship between key pre-and post-copulatory reproductive traits. Furthermore, 17S-TB-exposed males had, on average, a higher percentage of motile sperm, and performed fewer copulation attempts than unexposed males. However, there was no overall effect of 17S-TB exposure on either the time males spent associating with or chasing females. Taken together, our findings demonstrate the potential for chemical pollutants to affect both pre-and post-copulatory sexual traits, and the interplay between these mechanisms of sexual selection in contaminated wildlife. (c) 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http:// creativecommons.org/licenses/by/4.0/)

    The endocrine disruptor 17β-trenbolone alters the relationship between pre- and post-copulatory sexual traits in male mosquitofish (Gambusia holbrooki)

    Get PDF
    It is now well-established that reproduction in wildlife can be disrupted by anthropogenic environmental changes, such as chemical pollution. However, very little is known about how these pollutants might affect the interplay between pre- and post-copulatory mechanisms of sexual selection. Here, we investigated the impacts of 21-day exposure of male eastern mosquitofish (Gambusia holbrooki) to a field-realistic level (average measured concentration: 11 ng/L) of the endocrine-disrupting chemical 17β-trenbolone (17β-TB) on pre- and post-copulatory reproductive traits. We examined male reproductive behaviour by testing the time spent near a female behind a partition, as well as the number of copulation attempts made, and the time spent chasing a female in a free-swimming context. Sperm traits were also assayed for all males. We found that exposure of male fish to 17β-TB altered the relationship between key pre- and post-copulatory reproductive traits. Furthermore, 17β-TB-exposed males had, on average, a higher percentage of motile sperm, and performed fewer copulation attempts than unexposed males. However, there was no overall effect of 17β-TB exposure on either the time males spent associating with or chasing females. Taken together, our findings demonstrate the potential for chemical pollutants to affect both pre- and post-copulatory sexual traits, and the interplay between these mechanisms of sexual selection in contaminated wildlife

    Anisotropy in seafloor flange, slab, and crust samples from measurements of permeability and porosity : implications for fluid flow and deposit evolution

    Get PDF
    Author Posting. © American Geophysical Union, 2012. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 13 (2012): Q03018, doi:10.1029/2011GC003840.Seafloor hydrothermal vents accommodate the convective transfer of fluids from subsurface environments to the oceans. In addition to black smoker chimneys, a variety of other deposit-types form. Flanges protrude from the sides of edifices as horizontal ledges, below which vent fluids pool. Slabs are hydrothermally silicified layered volcaniclastic deposits. Crusts are deposits composed of previously deposited material underlain by hot fluids. Permeability and porosity measurements were conducted on flanges from Guaymas Basin and the Main Endeavour Vent Field, slabs from the Lucky Strike Vent Field, and a crust sample from the Trans-Atlantic Geotraverse (TAG) active mound. Cores taken parallel to textural layers have high permeabilities (≈10−12 m2) and porosities (30–40%) that follow a power law relationship with exponent α ≈ 1 to 2. Cores taken perpendicular to layering have permeabilities from 10−16 to 10−12 m2 and porosities from 20 to 45%, with α ≈ 5 to 8. The two distinct trends result from the heterogeneity of textural layers within these deposits. Microstructural observations show large variations in grain packing and pore distributions between layers, consistent with flow perpendicular to layering being more susceptible to changes in permeability that result from mineral precipitation than flow parallel to layering. These results imply that the primary flow direction in these deposits is parallel to layering, whereas flow perpendicular to layering is more restricted. Quantification of anisotropic permeability provides important constraints for determination of fluid flux from these layered deposits, and temperatures, chemistry, and availability of nutrients to organisms living in and at exteriors of deposits.This work was supported by the National Science Foundation under grants EAR-0741339 and OCE-0648337. Partial support for JG and WZ from DOE # DEFG0207ER15916 is also acknowledged.2012-09-2

    Constraints on the behavior of trace elements in the actively-forming TAG deposit, Mid-Atlantic Ridge, based on LA-ICP-MS analyses of pyrite

    Get PDF
    The distribution of trace ore elements in different paragenetic stages of pyrite has been documented for the first time in the sub-seafloor of the actively-forming TAG massive sulfide deposit. Trace element distributions have been determined by in-situ laser ablation inductively-coupled plasma mass spectrometry (LA-ICP-MS) of pyrite formed at different stages of mineralization, and at different temperatures constrained by previously published fluid inclusion analyses. The data reveal a strong dependence on paragenetic stage, with distinct low- and high-temperature enrichments. Porous pyrite (and marcasite) formed at low temperatures (350 °C) at the base of the hydrothermal mound and in the stockwork zone is enriched in Co, Se, Bi, Cu, Ni, and Sn. A number of different sub-types of pyrite also have characteristic trace element signatures; e.g., the earliest pyrite formed at the highest temperatures is always enriched in Co and Se compared to later stages. Ablation profiles for Co, Se, and Ni are smooth and indicate that these elements are present mainly in lattice substitutions rather than as inclusions of other sulfides. Profiles for As, Sb, Tl, and Cu can be either irregular or smooth, indicating both lattice substitutions and inclusions. Lead and Ag have mostly smooth profiles, but because Pb cannot substitute directly into the pyrite lattice, it is interpreted to be present as homogeneously distributed micro- or nano-scale particles. The behavior of the different trace elements mainly reflects their aqueous speciation in the hydrothermal fluids at different temperatures, and for some elements like Co and Se, strong partitioning into the pyrite lattice at elevated temperatures. Adsorption onto pyrite surfaces controls the distribution of a number of redox-sensitive elements (i.e., Mo, V, Ni, U), particularly in the upper part of the mound which is infiltrated by cold seawater. Where micro- or nano-scale inclusions of chalcopyrite, sphalerite, galena, or sulfosalts are present, there is still a strong temperature dependence on the inclusion population (e.g., more abundant chalcopyrite in the highest-temperature pyrite), suggesting that the inclusions were co-precipitated with pyrite rather than overgrown. However, at the deposit scale, the trace element distributions are also strongly controlled by remobilization and chemical zone refining, as previously documented in bulk geochemical profiles. The results show that pyrite chemistry is a remarkably good model of the chemistry of the entire hydrothermal system. For many trace elements, the concentrations in pyrite are highly predictive in terms of the conditions of mineral formation over a wide range of temperatures, from the stockwork zone to the cooler outer margins of the deposit. Calculated minimum concentrations of the trace elements in the fluids needed to account for the observed concentrations in pyrite show good agreement with measured vent fluid concentrations, particularly Pb, As, Mo, Ag, and Tl. However, significantly higher concentrations are indicated for Co (and Se) than have been measured in sampled fluids, confirming the strong partitioning of these elements into high-temperature pyrite

    Linkages between mineralogy, fluid chemistry, and microbial communities within hydrothermal chimneys from the Endeavor Segment, Juan de Fuca Ridge

    Get PDF
    Rock and fluid samples were collected from three hydrothermal chimneys at the Endeavour Segment, Juan de Fuca Ridge to evaluate linkages among mineralogy, fluid chemistry, and microbial community composition within the chimneys. Mössbauer, midinfrared thermal emission, and visible-near infrared spectroscopies were utilized for the first time to characterize vent mineralogy, in addition to thin-section petrography, X-ray diffraction, and elemental analyses. A 282°C venting chimney from the Bastille edifice was composed primarily of sulfide minerals such as chalcopyrite, marcasite, and sphalerite. In contrast, samples from a 300°C venting chimney from the Dante edifice and a 321°C venting chimney from the Hot Harold edifice contained a high abundance of the sulfate mineral anhydrite. Geochemical modeling of mixed vent fluids suggested the oxic-anoxic transition zone was above 100°C at all three vents, and that the thermodynamic energy available for autotrophic microbial redox reactions favored aerobic sulfide and methane oxidation. As predicted, microbes within the Dante and Hot Harold chimneys were most closely related to mesophilic and thermophilic aerobes of the Betaproteobacteria and Gammaproteobacteria and sulfide-oxidizing autotrophic Epsilonproteobacteria. However, most of the microbes within the Bastille chimney were most closely related to mesophilic and thermophilic anaerobes of the Deltaproteobacteria, especially sulfate reducers, and anaerobic hyperthermophilic archaea. The predominance of anaerobes in the Bastille chimney indicated that other environmental factors promote anoxic conditions. Possibilities include the maturity or fluid flow characteristics of the chimney, abiotic Fe2+ and S2− oxidation in the vent fluids, or O2 depletion by aerobic respiration on the chimney outer wall

    Geological interpretation of volcanism and segmentation of the Mariana back-arc spreading center between 12.7°N and 18.3°N

    Get PDF
    The relationships between tectonic processes, magmatism, and hydrothermal venting along ∼600 km of the slow-spreading Mariana back-arc between 12.7°N and 18.3°N reveal a number of similarities and differences compared to slow-spreading mid-ocean ridges. Analysis of the volcanic geomorphology and structure highlights the complexity of the back-arc spreading center. Here, ridge segmentation is controlled by large-scale basement structures that appear to predate back-arc rifting. These structures also control the orientation of the chains of cross-arc volcanoes that characterize this region. Segment-scale faulting is oriented perpendicular to the spreading direction, allowing precise spreading directions to be determined. Four morphologically distinct segment types are identified: dominantly magmatic segments (Type I); magmatic segments currently undergoing tectonic extension (Type II); dominantly tectonic segments (Type III); and tectonic segments currently undergoing magmatic extension (Type IV). Variations in axial morphology (including eruption styles, neovolcanic eruption volumes, and faulting) reflect magma supply, which is locally enhanced by cross-arc volcanism associated with N-S compression along the 16.5°N and 17.0°N segments. In contrast, cross-arc seismicity is associated with N-S extension and increased faulting along the 14.5°N segment, with structures that are interpreted to be oceanic core complexes—the first with high-resolution bathymetry described in an active back-arc basin. Hydrothermal venting associated with recent magmatism has been discovered along all segment types
    • …
    corecore