622 research outputs found

    Dark energy and dark matter from cosmological observations

    Full text link
    The present status of our knowledge about the dark matter and dark energy is reviewed. Bounds on the content of cold and hot dark matter from cosmological observations are discussed in some detail. I also review current bounds on the physical properties of dark energy, mainly its equation of state and effective speed of sound.Comment: 12 pages, 4 figures, to appear in Lepton-Photon 2005 proceedings, added figure and typos correcte

    Cosmological neutrino bounds for non-cosmologists

    Full text link
    I briefly review cosmological bounds on neutrino masses and the underlying gravitational physics at a level appropriate for readers outside the field of cosmology. For the case of three massive neutrinos with standard model freezeout, the current 95% upper limit on the sum of their masses is 0.42 eV. I summarize the basic physical mechanism making matter clustering such a sensitive probe of massive neutrinos. I discuss the prospects of doing still better in coming years using tools such as lensing tomography, approaching a sensitivity around 0.03 eV. Since the lower bound from atmospheric neutrino oscillations is around 0.05 eV, upcoming cosmological measurements should detect neutrino mass if the technical and fiscal challenges can be met.Comment: 4 pages, 2 figs, in "Neutrino Physics", Proceedings of Nobel Symposium 129, eds., L Bergstrom, O. Botner, P. Carlson, P. O. Hulth, and T. Ohlsso

    Recent Results of non-accelarator-based neutrino experiments

    Full text link
    Recent results of non-accelerator-based experiments, including those of solar, atmospheric, and reactor neutrinos oscillations, neutrinoless double-beta decays, and neutrino magnetic moments, are reviewed. Future projects and their respective prospects are summarized.Comment: V.2, minor changes with one more reference added. Plenary talk given at the "32nd International Conference on High Energy Physics", Aug. 16-22, 2004, Beijing, P.R. Chin

    Probing neutrino decays with the cosmic microwave background

    Get PDF
    We investigate in detail the possibility of constraining neutrino decays with data from the cosmic microwave background radiation (CMBR). Two generic decays are considered \nu_H -> \nu_L \phi and \nu_H -> \nu_L \nu_L_bar \nu_L. We have solved the momentum dependent Boltzmann equation in order to account for possible relativistic decays. Doing this we estimate that any neutrino with mass m > 1 eV decaying before the present should be detectable with future CMBR data. Combining this result with other results on stable neutrinos, any neutrino mass of the order 1 eV should be detectable.Comment: 8 pages, 4 figures, to appear in Phys. Rev.

    Majorana Neutrino, the Size of Extra Dimensions, and Neutrinoless Double Beta Decay

    Full text link
    The problem of Majorana neutrino mass generated in Arkani-Hamed--Dimopoulos-Dvali model with n extra spatial dimensions is discussed. Taking into account constraints on neutrino masses coming from cosmological observations, it is possible to obtain lower limits on the size of extra dimensions as large as 10^{-6} mm. In the case of n=4 it is easy to lower the fundamental scale of gravity from the Planck energy to electroweak scale \~TeV without imposing any additional constraints. A link between the half-life of neutrinoless double beta decay and the size of extra dimensions is discussed.Comment: 5 pages, 1 figure, using RevTEX. Units conversion correcte

    On the chaoticity of active-sterile neutrino oscillations in the early universe

    Get PDF
    We have investigated the evolution of the neutrino asymmetry in active-sterile neutrino oscillations in the early universe. We find that there are large regions of parameter space where the asymmetry is extremely sensitive to variations in the initial asymmetry as well as the external parameters (the mass difference and the mixing angle). In these regions the system undergoes chaotic transitions; however, the system is never truly chaotic in the sense that all information about initial conditions is lost. In some cases though, enough information is lost that the final sign of the neutrino asymmetry is stochastic. We discuss the implications of our findings for Big Bang nucleosynthesis (BBN) and the cosmic microwave background (CMB)

    Two non-commutative parameters and regular cosmological phase transition in the semi-classical dilaton cosmology

    Full text link
    We study cosmological phase transitions from modified equations of motion by introducing two non-commutative parameters in the Poisson brackets, which describes the initial- and future-singularity-free phase transition in the soluble semi-classical dilaton gravity with a non-vanishing cosmological constant. Accelerated expansion and decelerated expansion corresponding to the FRW phase appear alternatively, and then it ends up with the second accelerated expansion. The final stage of the universe approaches the flat spacetime independent of the initial state of the curvature scalar as long as the product of the two non-commutative parameters is less than one. Finally, we show that the initial-singularity-free condition is related to the second accelerated expansion of the universe.Comment: 13 pages, 4 figures; v2. to appear in Mod. Phys. Lett.

    Chaos, Determinacy and Fractals in Active-Sterile Neutrino Oscillations in the Early Universe

    Full text link
    The possibility of light sterile neutrinos allows for the resonant production of lepton number in the early universe through matter-affected neutrino mixing. For a given a mixing of the active and sterile neutrino states it has been found that the lepton number generation process is chaotic and strongly oscillatory. We undertake a new study of this process' sensitivity to initial conditions through the quantum rate equations. We confirm the chaoticity of the process in this solution, and moreover find that the resultant lepton number and the sign of the asymmetry produces a fractal in the parameter space of mass, mixing angle and initial baryon number. This has implications for future searches for sterile neutrinos, where arbitrary high sensitivity could not be determinate in forecasting the lepton number of the universe.Comment: 6 pages, 3 figure

    An approach to permutation symmetry for the electroweak theory

    Get PDF
    The form of the leptonic mixing matrix emerging from experiment has, in the last few years, generated a lot of interest in the so-called tribimaximal type. This form may be naturally associated with the possibility of a discrete permutation symmetry (S3S_3) among the three generations. However, trying to implement this attractive symmetry has resulted in some problems and it seems to have fallen out of favor. We suggest an approach in which the S3S_3 holds to first approximation, somewhat in the manner of the old SU(3) flavor symmetry of the three flavor quark model. It is shown that in the case of the neutrino sector, a presently large experimentally allowed region can be fairly well described in this first approximation. We briefly discuss the nature of the perturbations which are the analogs of the Gell-Mann Okubo perturbations but confine our attention for the most part to the S3S_3 invariant model. We postulate that the S3S_3 invariant mass spectrum consists of non zero masses for the (Ď„,b,t)(\tau,b,t) and zero masses for the other charged fermions but approximately degenerate masses for the three neutrinos. The mixing matrices are assumed to be trivial for the charged fermions but of tribimaximal type for the neutrinos in the first approximation. It is shown that this can be implemented by allowing complex entries for the mass matrix and spontaneous breakdown of the S3S_3 invariance of the Lagrangian.Comment: 24 pages, 1 figure, minor corrections and acknowledgment added. To appear in IJM

    Standard and non-standard primordial neutrinos

    Get PDF
    The standard cosmological model predicts the existence of a cosmic neutrino background with a present density of about 110 cm^{-3} per flavour, which affects big-bang nucleosynthesis, cosmic microwave background anisotropies, and the evolution of large scale structures. We report on a precision calculation of the cosmic neutrino background properties including the modification introduced by neutrino oscillations. The role of a possible neutrino-antineutrino asymmetry and the impact of non-standard neutrino-electron interactions on the relic neutrinos are also briefly discussed.Comment: 4 pages, no figures. Contribution to the proceedings of SNOW 2006, Stockholm, May 2-6, 2006. Typos corrected, updated reference
    • …
    corecore