4 research outputs found

    Assessing the validity of inertial measurement units for shoulder kinematics using a commercial sensor‐software system: A validation study

    No full text
    Abstract Background and  Aims Wearable inertial sensors may offer additional kinematic parameters of the shoulder compared to traditional instruments such as goniometers when elaborate and time‐consuming data processing procedures are undertaken. However, in clinical practice simple‐real time motion analysis is required to improve clinical reasoning. Therefore, the aim was to assess the criterion validity between a portable “off‐the‐shelf” sensor‐software system (IMU) and optical motion (Mocap) for measuring kinematic parameters during active shoulder movements. Methods 24 healthy participants (9 female, 15 male, age 29 ± 4 years, height 177 ± 11 cm, weight 73 ± 14 kg) were included. Range of motion (ROM), total range of motion (TROM), peak and mean angular velocity of both systems were assessed during simple (abduction/adduction, horizontal flexion/horizontal extension, vertical flexion/extension, and external/internal rotation) and complex shoulder movements. Criterion validity was determined using intraclass‐correlation coefficients (ICC), root mean square error (RMSE) and Bland and Altmann analysis (bias; upper and lower limits of agreement). Results ROM and TROM analysis revealed inconsistent validity during simple (ICC: 0.040−0.733, RMSE: 9.7°−20.3°, bias: 1.2°−50.7°) and insufficient agreement during complex shoulder movements (ICC: 0.104−0.453, RMSE: 10.1°−23.3°, bias: 1.0°−55.9°). Peak angular velocity (ICC: 0.202−0.865, RMSE: 14.6°/s−26.7°/s, bias: 10.2°/s−29.9°/s) and mean angular velocity (ICC: 0.019‐0.786, RMSE:6.1°/s−34.2°/s, bias: 1.6°/s−27.8°/s) were inconsistent. Conclusions The “off‐the‐shelf” sensor‐software system showed overall insufficient agreement with the gold standard. Further development of commercial IMU‐software‐solutions may increase measurement accuracy and permit their integration into everyday clinical practice

    The effect of chronic ankle instability on muscle activations in lower extremities.

    No full text
    Background/purposeMuscular reflex responses of the lower extremities to sudden gait disturbances are related to postural stability and injury risk. Chronic ankle instability (CAI) has shown to affect activities related to the distal leg muscles while walking. Its effects on proximal muscle activities of the leg, both for the injured- (IN) and uninjured-side (NON), remain unclear. Therefore, the aim was to compare the difference of the motor control strategy in ipsilateral and contralateral proximal joints while unperturbed walking and perturbed walking between individuals with CAI and matched controls.Materials and methodsIn a cross-sectional study, 13 participants with unilateral CAI and 13 controls (CON) walked on a split-belt treadmill with and without random left- and right-sided perturbations. EMG amplitudes of muscles at lower extremities were analyzed 200 ms after perturbations, 200 ms before, and 100 ms after (Post100) heel contact while walking. Onset latencies were analyzed at heel contacts and after perturbations. Statistical significance was set at alpha≀0.05 and 95% confidence intervals were applied to determine group differences. Cohen's d effect sizes were calculated to evaluate the extent of differences.ResultsParticipants with CAI showed increased EMG amplitudes for NON-rectus abdominus at Post100 and shorter latencies for IN-gluteus maximus after heel contact compared to CON (pConclusionUnilateral CAI alters the pattern of the motor control strategy around proximal joints bilaterally. Neuromuscular training for the muscles, which alters motor control strategy because of CAI, could be taken into consideration when planning rehabilitation for CAI

    A method for lower back motion assessment using wearable 6D inertial sensors

    No full text
    Low back pain (LBP) is a leading cause of activity limitation. Objective assessment of the spinal motion plays a key role in diagnosis and treatment of LBP. We propose a method that facilitates clinical assessment of lower back motions by means of a wireless inertial sensor network. The sensor units are attached to the right and left side of the lumbar region, the pelvis and the thighs, respectively. Since magnetometers are known to be unreliable in indoor environments, we use only 3D accelerometer and 3D gyroscope readings. Compensation of integration drift in the horizontal plane is achieved by estimating the gyroscope biases from automatically detected initial rest phases. For the estimation of sensor orientations, both a smoothing algorithm and a filtering algorithm are presented. From these orientations, we determine three-dimensional joint angles between the thighs and the pelvis and between the pelvis and the lumbar region. We compare the orientations and joint angles to measurements of an optical motion tracking system that tracks each skin-mounted sensor by means of reflective markers. Eight subjects perform a neutral initial pose, then flexion/extension, lateral flexion, and rotation of the trunk. The root mean square deviation between inertial and optical angles is about one degree for angles in the frontal and sagittal plane and about two degrees for angles in the transverse plane (both values averaged over all trials). We choose five features that characterize the initial pose and the three motions. Interindividual differences of all features are found to be clearly larger than the observed measurement deviations. These results indicate that the proposed inertial sensor-based method is a promising tool for lower back motion assessment.Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Team Jan-Willem van Wingerde
    corecore