45 research outputs found

    Episodic formation of cometary material in the outburst of a solar-like young star

    Full text link
    Our Solar System originated in interstellar gas and dust; the latter is in the form of amorphous silicate particles and carbonaceous dust. The composition of cometary material shows that a significant fraction of the amorphous silicates was transformed into crystalline form during the early evolution of the protosolar nebula. How and when this transformation happened has been controversial, with the main options being heating by the young Sun or shock heating. Here we report mid-infrared features in the outburst spectrum of the young solar-like star EX Lupi that were not present in quiescence. We attribute them to crystalline forsterite; the crystals were produced via thermal annealing in the surface layer of the inner disk by heat from the outburst, a process that has hitherto not been considered. The observed lack of cold crystals excludes shock heating at larger radii.Comment: 13 pages of PDF, including Supplementary Informatio

    Identifying Canadian Freshwater Fishes through DNA Barcodes

    Get PDF
    BACKGROUND: DNA barcoding aims to provide an efficient method for species-level identifications using an array of species specific molecular tags derived from the 5' region of the mitochondrial cytochrome c oxidase I (COI) gene. The efficiency of the method hinges on the degree of sequence divergence among species and species-level identifications are relatively straightforward when the average genetic distance among individuals within a species does not exceed the average genetic distance between sister species. Fishes constitute a highly diverse group of vertebrates that exhibit deep phenotypic changes during development. In this context, the identification of fish species is challenging and DNA barcoding provide new perspectives in ecology and systematics of fishes. Here we examined the degree to which DNA barcoding discriminate freshwater fish species from the well-known Canadian fauna, which currently encompasses nearly 200 species, some which are of high economic value like salmons and sturgeons. METHODOLOGY/PRINCIPAL FINDINGS: We bi-directionally sequenced the standard 652 bp "barcode" region of COI for 1360 individuals belonging to 190 of the 203 Canadian freshwater fish species (95%). Most species were represented by multiple individuals (7.6 on average), the majority of which were retained as voucher specimens. The average genetic distance was 27 fold higher between species than within species, as K2P distance estimates averaged 8.3% among congeners and only 0.3% among concpecifics. However, shared polymorphism between sister-species was detected in 15 species (8% of the cases). The distribution of K2P distance between individuals and species overlapped and identifications were only possible to species group using DNA barcodes in these cases. Conversely, deep hidden genetic divergence was revealed within two species, suggesting the presence of cryptic species. CONCLUSIONS/SIGNIFICANCE: The present study evidenced that freshwater fish species can be efficiently identified through the use of DNA barcoding, especially the species complex of small-sized species, and that the present COI library can be used for subsequent applications in ecology and systematics

    Mind the gap: connexins and cell–cell communication in the diabetic kidney

    Get PDF
    Connexins, assembled as a hexameric connexon, form a transmembrane hemichannel that provides a conduit for paracrine signalling of small molecules and ions to regulate the activity and function of adjacent cells. When hemichannels align and associate with similar channels on opposing cells, they form a continuous aqueous pore or gap junction, allowing the direct transmission of metabolic and electrical signals between coupled cells. Regulation of gap junction synthesis and channel activity is critical for cell function, and a number of diseases can be attributed to changes in the expression/function of these important proteins. Diabetic nephropathy is associated with several complex metabolic and inflammatory responses characterised by defects at the molecular, cellular and tissue level. In both type 1 and type 2 diabetes, glycaemic injury of the kidney is the leading cause of end-stage renal failure, a consequence of multiple aetiologies, including increased deposition of extracellular matrix, glomerular hyperfiltration, albuminuria and tubulointerstitial fibrosis. In diabetic nephropathy, loss of connexin mediated cell–cell communication within the nephron may represent an early sign of disease; however, our current knowledge of the role of connexins in the diabetic kidney is sparse. This review highlights recent evidence demonstrating that maintenance of connexin-mediated cell–cell communication could benefit region-specific renal function in diabetic nephropathy and suggests that these proteins should be viewed as a tantalising novel target for therapeutic intervention

    Production of dust by massive stars at high redshift

    Full text link
    The large amounts of dust detected in sub-millimeter galaxies and quasars at high redshift pose a challenge to galaxy formation models and theories of cosmic dust formation. At z > 6 only stars of relatively high mass (> 3 Msun) are sufficiently short-lived to be potential stellar sources of dust. This review is devoted to identifying and quantifying the most important stellar channels of rapid dust formation. We ascertain the dust production efficiency of stars in the mass range 3-40 Msun using both observed and theoretical dust yields of evolved massive stars and supernovae (SNe) and provide analytical expressions for the dust production efficiencies in various scenarios. We also address the strong sensitivity of the total dust productivity to the initial mass function. From simple considerations, we find that, in the early Universe, high-mass (> 3 Msun) asymptotic giant branch stars can only be dominant dust producers if SNe generate <~ 3 x 10^-3 Msun of dust whereas SNe prevail if they are more efficient. We address the challenges in inferring dust masses and star-formation rates from observations of high-redshift galaxies. We conclude that significant SN dust production at high redshift is likely required to reproduce current dust mass estimates, possibly coupled with rapid dust grain growth in the interstellar medium.Comment: 72 pages, 9 figures, 5 tables; to be published in The Astronomy and Astrophysics Revie

    Infrared spectrophotometry of Comet IRAS-Araki-Alcock (1983d): a bare nucleus revealed?

    No full text
    Spectra of the central core and surrounding coma of Comet IRAS-Araki-Alcock (1983d) were obtained at 8-13 μm on 11 May and 2-4 μm on 12 May 1983. Spatially resolved measurements at 10 μm with a 4-arcsec beam showed that the central core was more than 100 times brighter than the inner coma only 8 arcsec away; for radially outflowing dust, the brightness ratio would be a factor of 8. The observations of the central core are consistent with direct detection of a nucleus having a radius of approximately 5 km. The temperature of the sunlit hemisphere was &gt; 300 K. Spectra of the core are featureless, while spectra of the coma suggest weak silicate emission. The spectra show no evidence for icy grains. The dust producton rate on 11.4 May was ∼ 105 g/sec, assuming that the gas flux from the dust-producing areas on the nucleus was ∼ 10-5 g/cm2/sec. © 1985
    corecore