3 research outputs found

    Does targeting manual therapy and/or exercise improve patient outcomes in nonspecific low back pain? A systematic review

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A central element in the current debate about best practice management of non-specific low back pain (NSLBP) is the efficacy of targeted versus generic (non-targeted) treatment. Many clinicians and researchers believe that tailoring treatment to NSLBP subgroups positively impacts on patient outcomes. Despite this, there are no systematic reviews comparing the efficacy of targeted versus non-targeted manual therapy and/or exercise. This systematic review was undertaken in order to determine the efficacy of such targeted treatment in adults with NSLBP.</p> <p>Method</p> <p>MEDLINE, EMBASE, Current Contents, AMED and the Cochrane Central Register of Controlled Trials were electronically searched, reference lists were examined and citation tracking performed. Inclusion criteria were randomized controlled trials of targeted manual therapy and/or exercise for NSLPB that used trial designs capable of providing robust information on targeted treatment (treatment effect modification) for the outcomes of activity limitation and pain. Included trials needed to be hypothesis-testing studies published in English, Danish or Norwegian. Method quality was assessed using the criteria recommended by the Cochrane Back Review Group.</p> <p>Results</p> <p>Four high-quality randomized controlled trials of targeted manual therapy and/or exercise for NSLBP met the inclusion criteria. One study showed statistically significant effects for short-term outcomes using McKenzie directional preference-based exercise. Research into subgroups requires much larger sample sizes than traditional two-group trials and other included studies showed effects that might be clinically important in size but were not statistically significant with their samples sizes.</p> <p>Conclusions</p> <p>The clinical implications of these results are that they provide very cautious evidence supporting the notion that treatment targeted to subgroups of patients with NSLBP may improve patient outcomes. The results of the studies included in this review are too patchy, inconsistent and the samples investigated are too small for any recommendation of any treatment in routine clinical practice to be based on these findings. The research shows that adequately powered controlled trials using designs capable of providing robust information on treatment effect modification are uncommon. Considering how central the notion of targeted treatment is to manual therapy principles, further studies using this research method should be a priority for the clinical and research communities.</p

    Clinimetrics corner: choosing appropriate study designs for particular questions about treatment subgroups

    No full text
    Background: Many clinicians and researchers believe that there are subgroups of people with spinal pain who respond differently to treatment and have different prognoses. There has been considerable interest in this topic recently. However, problems occur when conclusions about subgroups are made that are inappropriate given the randomized controlled trial design used. The research design to choose, when developing a study protocol that investigates the effect of treatment subgroups, depends on the particular research question. Similarly, the inferences that can be drawn from an existing study will vary, depending on the design of the trial. Objectives: This paper discusses the randomized controlled trial designs that are suitable to answer particular questions about treatment subgroups. It focuses on trial designs that are suitable to answer four questions: (1) 'Is the treatment effective in a pre-specified group of patients?'; (2) 'Are outcomes of treatment applied using a subgrouping clinical reasoning process, better than a control treatment?'; (3) 'Are the outcomes for a patient subgroup receiving a particular treatment (compared to a control treatment) better than for patients not in the subgroup who receive the same treatment?'; and (4) 'Are outcomes for a number of treatments better if those treatments are matched to patients in specific subgroups, than if the SAME treatments are randomly given to patients?'. Illustrative examples of these studies are provided. Conclusion: If the clinical usefulness of targeting treatments to subgroups of people is to be determined, an important step is a shared understanding of what different RCT designs can tell us about subgroups.6 page(s

    Clinically acceptable agreement between the ViMove wireless motion sensor system and the Vicon motion capture system when measuring lumbar motion in flexion/extension and lateral flexion

    Get PDF
    Background Wireless, wearable, inertial motion sensor technology introduces new possibilities for monitoring spinal motion and pain in people during their daily activities of work, rest and play. There are many types of these wireless devices currently available but the precision in measurement and the magnitude of measurement error from such devices is often unknown. This study investigated the concurrent validity of one inertial motion sensor system (ViMove) for its ability to measure lumbar inclination motion, compared with the Vicon motion capture system. Methods To mimic the variability of movement patterns in a clinical population, a sample of 34 people were included – 18 with low back pain and 16 without low back pain. ViMove sensors were attached to each participant’s skin at spinal levels T12 and S2, and Vicon surface markers were attached to the ViMove sensors. Three repetitions of end-range flexion inclination, extension inclination and lateral flexion inclination to both sides while standing were measured by both systems concurrently with short rest periods in between. Measurement agreement through the whole movement range was analysed using a multilevel mixed-effects regression model to calculate the root mean squared errors and the limits of agreement were calculated using the Bland Altman method. Results We calculated root mean squared errors (standard deviation) of 1.82° (±1.00°) in flexion inclination, 0.71° (±0.34°) in extension inclination, 0.77° (±0.24°) in right lateral flexion inclination and 0.98° (±0.69°) in left lateral flexion inclination. 95% limits of agreement ranged between -3.86° and 4.69° in flexion inclination, -2.15° and 1.91° in extension inclination, -2.37° and 2.05° in right lateral flexion inclination and -3.11° and 2.96° in left lateral flexion inclination. Conclusions We found a clinically acceptable level of agreement between these two methods for measuring standing lumbar inclination motion in these two cardinal movement planes. Further research should investigate the ViMove system’s ability to measure lumbar motion in more complex 3D functional movements and to measure changes of movement patterns related to treatment effects
    corecore