2,735 research outputs found
Associations of region-specific foot pain and foot biomechanics: the framingham foot study
BACKGROUND. Specific regions of the foot are responsible for the gait tasks of weight acceptance, single-limb support, and forward propulsion. With region foot pain, gait abnormalities may arise and affect the plantar pressure and force pattern utilized. Therefore, this study’s purpose was to evaluate plantar pressure and force pattern differences between adults with and without region-specific foot pain. METHODS. Plantar pressure and force data were collected on Framingham Foot Study members while walking barefoot at a self-selected pace. Foot pain was evaluated by self-report and grouped by foot region (toe, forefoot, midfoot, or rearfoot) or regions (two or three or more regions) of pain. Unadjusted and adjusted linear regression with generalized estimating equations was used to determine associations between feet with and without foot pain. RESULTS. Individuals with distal foot (forefoot or toes) pain had similar maximum vertical forces under the pain region, while those with proximal foot (rearfoot or midfoot) pain had different maximum vertical forces compared to those without regional foot pain (referent). During walking, there were significant differences in plantar loading and propulsion ranging from 2% to 4% between those with and without regional foot pain. Significant differences in normalized maximum vertical force and plantar pressure ranged from 5.3% to 12.4% and 3.4% to 24.1%, respectively, between those with and without regional foot pain. CONCLUSIONS. Associations of regional foot pain with plantar pressure and force were different by regions of pain. Region-specific foot pain was not uniformly associated with an increase or decrease in loading and pressure patterns regions of pain
Development and evaluation of lessons for class and group situations in grade one
Thesis (Ed.M.)--Boston Universit
Recommended from our members
Foot posture, foot function and low back pain: the Framingham Foot Study
Sex differences in circumstances and consequences of outdoor and indoor falls in older adults in the MOBILIZE Boston cohort study
Background: Despite extensive research on risk factors associated with falling in older adults, and current fall prevention interventions focusing on modifiable risk factors, there is a lack of detailed accounts of sex differences in risk factors, circumstances and consequences of falls in the literature. We examined the circumstances, consequences and resulting injuries of indoor and outdoor falls according to sex in a population study of older adults. Methods: Men and women 65 years and older (N = 743) were followed for fall events from the Maintenance of Balance, Independent Living, Intellect, and Zest in the Elderly (MOBILIZE) Boston prospective cohort study. Baseline measurements were collected by comprehensive clinical assessments, home visits and questionnaires. During the follow-up (median = 2.9 years), participants recorded daily fall occurrences on a monthly calendar, and fall circumstances were determined by a telephone interview. Falls were categorized by activity and place of falling. Circumstance-specific annualized fall rates were calculated and compared between men and women using negative binomial regression models. Results: Women had lower rates of outdoor falls overall (Crude Rate Ratio (RR): 0.72, 95% Confidence Interval (CI): 0.56-0.92), in locations of recreation (RR: 0.34, 95% CI: 0.17-0.70), during vigorous activity (RR: 0.38, 95% CI: 0.18-0.81) and on snowy or icy surfaces (RR: 0.55, 95% CI: 0.36-0.86) compared to men. Women and men did not differ significantly in their rates of falls outdoors on sidewalks, streets, and curbs, and during walking. Compared to men, women had greater fall rates in the kitchen (RR: 1.88, 95% CI: 1.04-3.40) and while performing household activities (RR: 3.68, 95% CI: 1.50-8.98). The injurious outdoor fall rates were equivalent in both sexes. Women’s overall rate of injurious indoor falls was nearly twice that of men’s (RR: 1.98, 95% CI: 1.44-2.72), especially in the kitchen (RR: 6.83, 95% CI: 2.05-22.79), their own home (RR: 1.84, 95% CI: 1.30-2.59) and another residential home (RR: 4.65, 95% CI: 1.05-20.66) or other buildings (RR: 2.29, 95% CI: 1.18-4.44). Conclusions: Significant sex differences exist in the circumstances and injury potential when older adults fall indoors and outdoors, highlighting a need for focused prevention strategies for men and women
Stereotyped odor-evoked activity in the mushroom body of Drosophila revealed by green fluorescent protein-based Ca2+ imaging
To study the representation of olfactory information in higher brain centers, we expressed a green fluorescent protein-based Ca2+ sensor, G-CaMP, in the Drosophila mushroom body (MB). Using two-photon microscopy, we imaged odor-evoked G-CaMP fluorescence transients in MB neurons [Kenyon cells (KCs)] with single-cell resolution. Odors produced large fluorescence transients in a subset of KC somata and in restricted regions of the calyx, the neuropil of the MB. In different KCs, odor-evoked fluorescence transients showed diverse changes with odor concentration: in some KCs, fluorescence transients were evoked by an odor at concentrations spanning several orders of magnitude, whereas in others only at a narrow concentration range. Different odors produced fluorescence transients in different subsets of KCs. The spatial distributions of KCs showing fluorescence transients evoked by a given odor were similar across individuals. For some odors, individual KCs with fluorescence transients evoked by a particular odor could be found in similar locations in different flies with spatial precisions on the order of the size of KC somata. These results indicate that odor-evoked activity can have remarkable spatial specificity in the MB
Quality of Maximum Likelihood Estimates of Parameters in a Log-Linear Rate Model
The authors address four sources of indeterminacy in maximum likelihood estimation (MLE) for multivariate modeling of change using panel data: censoring, caused by changes that occur after the observation period ends; small sample size; interacting censoring with sample size; and collinearity among causal variables. They explore the issues with simulations and conclude that MLE estimates are generally efficient except when censoring is extreme, and efficiency is only slightly affected by collinearity among independent variables. Related publications include Tuma and Hannan (1979) and Tuma, Hannan, and Groeneveld (1979)
Metalanguage in L1 English-speaking 12-year-olds: which aspects of writing do they talk about?
Traditional psycholinguistic approaches to metalinguistic awareness in L1 learners elicit responses containing metalanguage that demonstrates metalinguistic awareness
of pre-determined aspects of language knowledge. This paper, which takes a more ethnographic approach, demonstrates how pupils are able to engage their own focus of metalanguage when reflecting on their everyday learning activities involving written language. What is equally significant is what their metalanguage choices reveal about
their understanding and application of written language concepts
Recommended from our members
Hallux valgus and plantar pressure loading: the Framingham foot study
Background: Hallux valgus (HV), a common structural foot deformity, can cause foot pain and lead to limited mobility. The purpose of this study was to evaluate differences in plantar pressure and force during gait by HV status in a large population-based cohort of men and women. Methods: A trained examiner performed a validated physical examination on participants’ feet and recorded the presence of hallux valgus and other specific foot disorders. Each foot was classified into one of four mutually exclusive groups based on the foot examination. Foot groups were: (i) HV only, (ii) HV and at least one additional foot disorder (FD), (iii) no HV but at least one other FD, and (iv) neither HV nor FD (referent). Biomechanical data for both feet were collected using Tekscan Matscan. Foot posture during quiet standing, using modified arch index (MAI), and foot function during gait, using center of pressure excursion index (CPEI), were calculated per foot. Further, walking scans were masked into eight sub-regions using Novel Automask, and peak pressure and maximum force exerted in each region were calculated. Results: There were 3205 participants, contributing 6393 feet with complete foot exam data and valid biomechanical measurements. Participants with HV had lower hallucal loading and higher forces at lesser toes as well as higher MAI and lower CPEI values compared to the referent. Participants with HV and other FDs were also noted to have aberrant rearfoot forces and pressures. Conclusions: These results suggest that HV alters foot loading patterns and pressure profiles. Future work should investigate how these changes affect the risk of other foot and lower extremity ailments
- …