5 research outputs found

    Microplastics and Per- and Polyfluoroalkyl Substances (PFAS) Analysis in Sea Turtles and Bottlenose Dolphins along Mississippi’s Coast

    No full text
    Global plastic production and usage has increased annually for decades and microplastic pollutants (≤5 mm) are a growing concern. Microplastics in surface waters can adsorb and desorb harmful chemicals such as per- and polyfluoroalkyl substances (PFAS). Microplastics can accumulate across all tropic levels in the marine food web. The purpose of this research was to analyze the stomach and intestinal contents of stranded (Mississippi coast) bottlenose dolphins and sea turtles for the presence of microplastics and commonly found PFAS, PFOS, PFOA, and GenX. Gut contents were digested (10% KOH in 50% MeOH) and then analyzed for microplastics using pyrolysis gas chromatography-mass spectrometry (Pyro-GC-MS), Nile red microscopy, X-ray photo electron spectroscopy (XPS), and Raman spectroscopy. Digested sample filtrate was pre-concentrated using solid-phase extraction (SPE) before PFAS liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. The PFOS extraction and analysis had 98.6% recovery when validated with certified pike‒perch fish reference material. The Nile red testing on most samples revealed the presence of microplastics (Table S1). The Pyro-GC-MS results from two samples confirmed the presence of the plasticizer acetamide. The Raman spectroscopy analysis indicated characteristic plastic peaks corresponding to polystyrene in one sample. PFOS (95.5 to 1,934.5 µg/kg) was detected in three dolphin stomach samples. This project is part of a long-term study with the goal of a better understanding of microplastics and PFAS environmental contamination and their impact on bottlenose dolphins and sea turtles

    Enhanced contact investigations for nine early travel-related cases of SARS-CoV-2 in the United States

    No full text
    Coronavirus disease 2019 (COVID-19), the respiratory disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was first identified in Wuhan, China and has since become pandemic. In response to the first cases identified in the United States, close contacts of confirmed COVID-19 cases were investigated to enable early identification and isolation of additional cases and to learn more about risk factors for transmission. Close contacts of nine early travel-related cases in the United States were identified and monitored daily for development of symptoms (active monitoring). Selected close contacts (including those with exposures categorized as higher risk) were targeted for collection of additional exposure information and respiratory samples. Respiratory samples were tested for SARS-CoV-2 by real-time reverse transcription polymerase chain reaction at the Centers for Disease Control and Prevention. Four hundred four close contacts were actively monitored in the jurisdictions that managed the travel-related cases. Three hundred thirty-eight of the 404 close contacts provided at least basic exposure information, of whom 159 close contacts had ≥1 set of respiratory samples collected and tested. Across all actively monitored close contacts, two additional symptomatic COVID-19 cases (i.e., secondary cases) were identified; both secondary cases were in spouses of travel-associated case patients. When considering only household members, all of whom had ≥1 respiratory sample tested for SARS-CoV-2, the secondary attack rate (i.e., the number of secondary cases as a proportion of total close contacts) was 13% (95% CI: 4–38%). The results from these contact tracing investigations suggest that household members, especially significant others, of COVID-19 cases are at highest risk of becoming infected. The importance of personal protective equipment for healthcare workers is also underlined. Isolation of persons with COVID-19, in combination with quarantine of exposed close contacts and practice of everyday preventive behaviors, is important to mitigate spread of COVID-19

    Clinical and virologic characteristics of the first 12 patients with coronavirus disease 2019 (COVID-19) in the United States.

    No full text
    Data on the detailed clinical progression of COVID-19 in conjunction with epidemiological and virological characteristics are limited. In this case series, we describe the first 12 US patients confirmed to have COVID-19 from 20 January to 5 February 2020, including 4 patients described previously1,2,3. Respiratory, stool, serum and urine specimens were submitted for SARS-CoV-2 real-time reverse-transcription polymerase chain reaction (rRT-PCR) testing, viral culture and whole genome sequencing. Median age was 53 years (range: 21–68); 8 patients were male. Common symptoms at illness onset were cough (n = 8) and fever (n = 7). Patients had mild to moderately severe illness; seven were hospitalized and demonstrated clinical or laboratory signs of worsening during the second week of illness. No patients required mechanical ventilation and all recovered. All had SARS-CoV-2 RNA detected in respiratory specimens, typically for 2–3 weeks after illness onset. Lowest real-time PCR with reverse transcription cycle threshold values in the upper respiratory tract were often detected in the first week and SARS-CoV-2 was cultured from early respiratory specimens. These data provide insight into the natural history of SARS-CoV-2. Although infectiousness is unclear, highest viral RNA levels were identified in the first week of illness. Clinicians should anticipate that some patients may worsen in the second week of illness
    corecore