7 research outputs found

    Hairy black holes in cubic quasi-topological gravity

    Full text link
    We construct a class of five dimensional black hole solutions to cubic quasi-topological gravity with conformal scalar hair and study their thermodynamics. We find these black holes provide the second example of black hole λ\lambda-lines: a line of second order (continuous) phase transitions, akin to the fluid/superfluid transition of 4^4He. Examples of isolated critical points are found for spherical black holes, marking the first in the literature to date. We also find various novel and interesting phase structures, including an isolated critical point occurring in conjunction with a double reentrant phase transition. The AdS vacua of the theory are studied, finding ghost-free configurations where the scalar field takes on a non-zero constant value, in notable contrast to the five dimensional Lovelock case.Comment: 29 pages, 12 figure

    NuSTAR and Chandra observations of new X-ray transients in the central parsec of the Galaxy

    Get PDF
    We report NuSTAR and Chandra observations of two X-ray transients, SWIFT J174540.7−-290015 (T15) and SWIFT J174540.2−-290037 (T37), which were discovered by the Neil Gehrels Swift Observatory in 2016 within r∌1r\sim1 pc of Sgr A*. NuSTAR detected bright X-ray outbursts from T15 and T37, likely in the soft and hard states, with 3-79~keV luminosities of 8×10368\times10^{36} and 3×10373\times10^{37} erg/s, respectively. No X-ray outbursts have previously been detected from the two transients and our Chandra ACIS analysis puts an upper limit of LXâ‰Č2×1031L_X \lesssim 2 \times10^{31} erg/s on their quiescent 2-8 keV luminosities. No pulsations, significant QPOs, or type I X-ray bursts were detected in the NuSTAR data. While T15 exhibited no significant red noise, the T37 power density spectra are well characterized by three Lorentzian components. The declining variability of T37 above Μ∌10\nu \sim 10 Hz is typical of black hole (BH) transients in the hard state. NuSTAR spectra of both transients exhibit a thermal disk blackbody, X-ray reflection with broadened Fe atomic features, and a continuum component well described by Comptonization models. Their X-ray reflection spectra are most consistent with high BH spin (a∗≳0.9a_{*} \gtrsim 0.9) and large disk density (ne∌1021n_e\sim10^{21} cm−3^{-3}). Based on the best-fit ionization parameters and disk densities, we found that X-ray reflection occurred near the inner disk radius, which was derived from the relativistic broadening and thermal disk component. These X-ray characteristics suggest the outbursting BH-LMXB scenario for both transients and yield the first BH spin measurements from X-ray transients in the central 100 pc region.Comment: 15 pages, 7 figures, accepted for publication in Ap
    corecore