2 research outputs found

    Cell-free DNA levels of twins and sibling pairs indicate individuality and possible use as a personalized biomarker.

    No full text
    Cell-free DNA (cfDNA) in the human blood circulation has been under investigation since its initial observation in 1948. Plasma cfDNA is known to be significantly elevated in diseased people. Due to possible variation in the population, evaluating cfDNA as a non-invasive biomarker at disease onset alone may not be sensitive enough to accurately diagnose diseases, particularly early stage cancers on a personal level. To understand the factors that define the cfDNA levels on the personal level and for better use as a non-invasive biomarker, we isolated cfDNA from the plasma of healthy individuals with varying degrees of genetic and/or environmental similarities (monozygotic twins, dizygotic twins, sibling pairs, and unrelated individuals) as well as from patients with varying stages of breast and ovarian cancer undergoing treatment. Cell-free DNA levels were quantified by a fluorometer (ng/ml) and/or real-time PCR (copies/ml). The associations between individuals with various degrees of genetic and/or environmental similarities and their plasma cfDNA levels were evaluated. The ACE model (A = additive genetic, C = common environment, and E = specific environmental factors) was used to determine the proportion of each factor on the cfDNA levels. We found a high correlation (r = 0.77; p < 0.0001) in plasma cfDNA levels between monozygotic twins (n = 39). However, the correlation was gradually reduced to moderate (r = 0.47; p = 0.016) between dizygotic twins (n = 13) and low correlation (r = 0.28; p = 0.043) between sibling pairs (n = 26). The ACE model analysis showed that the plasma cfDNA level of a given healthy individual is influenced both by genetic and the environmental components in similar proportions (53% and 47%, respectively; A = 53%, C = 22.5%, E = 24.5%). Moreover, while age had no effect, gender significantly influenced the individual's plasma cfDNA level. As expected, cfDNA levels were significantly higher in both breast (n = 26) (p<0.0001) and ovarian (n = 64) (p<0.0001) cancer patients compared to the healthy individuals. Our study demonstrated that both genome and environmental factors modulate the individual's cfDNA level suggesting that its diagnostic sensitivity may be improved only if the person's cfDNA level is known prior to disease presentation

    Methylation of BRCA1 and MGMT genes in white blood cells are transmitted from mothers to daughters

    No full text
    Abstract Background Constitutive methylation of tumor suppressor genes are associated with increased cancer risk. However, to date, the question of epimutational transmission of these genes remains unresolved. Here, we studied the potential transmission of BRCA1 and MGMT promoter methylations in mother-newborn pairs. Methods A total of 1014 female subjects (cancer-free women, n = 268; delivering women, n = 295; newborn females, n = 302; breast cancer patients, n = 67; ovarian cancer patients, n = 82) were screened for methylation status in white blood cells (WBC) using methylation-specific PCR and bisulfite pyrosequencing assays. In addition, BRCA1 gene expression levels were analyzed by quantitative real-time PCR. Results We found similar methylation frequencies in newborn and adults for both BRCA1 (9.9 and 9.3%) and MGMT (12.3 and 13.1%). Of the 290 mother-newborn pairs analyzed for promoter methylation, 20 mothers were found to be positive for BRCA1 and 29 for MGMT. Four mother-newborn pairs were positive for methylated BRCA1 (20%) and nine pairs were positive for methylated MGMT (31%). Intriguingly, the delivering women had 26% lower BRCA1 and MGMT methylation frequencies than those of the cancer-free female subjects. BRCA1 was downregulated in both cancer-free woman carriers and breast cancer patients but not in newborn carriers. There was a statistically significant association between the MGMT promoter methylation and late-onset breast cancers. Conclusions Our study demonstrates that BRCA1and MGMT epimutations are present from the early life of the carriers. We show the transmission of BRCA1 and MGMT epimutations from mother to daughter. Our data also point at the possible demethylation of BRCA1and MGMT during pregnancy
    corecore