2 research outputs found

    Dormant Intestinal Stem Cells Are Regulated by PTEN and Nutritional Status

    Get PDF
    The cellular and molecular mechanisms underlying adaptive changes to physiological stress within the intestinal epithelium remain poorly understood. Here, we show that PTEN, a negative regulator of the PI3K→AKT→mTORC1-signaling pathway, is an important regulator of dormant intestinal stem cells (d-ISCs). Acute nutrient deprivation leads to transient PTEN phosphorylation within d-ISCs and a corresponding increase in their number. This release of PTEN inhibition renders d-ISCs functionally poised to contribute to the regenerative response during re-feeding via cell-autonomous activation of the PI3K→AKT→mTORC1 pathway. Consistent with its role in mediating cell survival, PTEN is required for d-ISC maintenance at baseline, and intestines lacking PTEN have diminished regenerative capacity after irradiation. Our results highlight a PTEN-dependent mechanism for d-ISC maintenance and further demonstrate the role of d-ISCs in the intestinal response to stress
    corecore