12,632 research outputs found

    Efficient superfluorescent light sources with broad bandwidth

    No full text
    We demonstrate various efficient broad-band light sources at ~1µm wavelength with a 3dB bandwidth of up to 65nm at 108mW output power, based on rare-earth doped silica fibers and a simple adjustable spectral filter

    X-Ray Tomography To Measure Size Of Fragments From Penetration Of High-Velocity Tungsten Rods

    Get PDF
    Behind-armor debris that results from tungsten rods penetrating armor steel at 2 km/s was studied by analysis of recovered fragments. Fragment recovery was by means of particle board. Individual fragments were analyzed by x-ray tomography, which provides information for fragment identification, mass, shape, and penetration down to masses of a few milligrams. The experiments were complemented by AUTODYN and EPIC calculations. Fragments were steel or tungsten generated from the channel or from the breakout through the target rear surface. Channel fragment motions were well described by Tate theory. Breakout fragments had velocities from the projectile remnant to the channel velocity, apparently depending on where in the projectile a fragment originated. The fragment size distribution was extremely broad and did not correlate well with simple uniform-fragment-size models.Mechanical Engineerin

    Out-of-plane focusing grating couplers for silicon photonics integration with optical MRAM technology

    Get PDF
    We present the design methodology and experimental characterization of compact out-of-plane focusing grating couplers for integration with magnetoresistive random access memory technology. Focusing grating couplers have recently found attention as layer-couplers for photonic-electronic integration. The components we demonstrate are designed for a wavelength of 1550 nm, fabricated in a standard 220 nm SOI photonic platform and optimized given the fabrication restrictions for standard 193-nm UV lithography. For the first time, we extend the design based on the phase matching condition to a two-dimensional (2-D) grating design with two optical input ports. We further present the experimental characterization of the focusing behaviour by spatially probing the emitted beam with a tapered-and-lensed fiber and demonstrate the polarization controlling capabilities of the 2-D FGCs

    Evolution of the bilayer nu = 1 quantum Hall state under charge imbalance

    Full text link
    We use high-mobility bilayer hole systems with negligible tunneling to examine how the bilayer nu = 1 quantum Hall state evolves as charge is transferred from one layer to the other at constant total density. We map bilayer nu = 1 state stability versus imbalance for five total densities spanning the range from strongly interlayer coherent to incoherent. We observe competition between single-layer correlations and interlayer coherence. Most significantly, we find that bilayer systems that are incoherent at balance can develop spontaneous interlayer coherence with imbalance, in agreement with recent theoretical predictions.Comment: 4 pages, 4 figure

    Impact-induced acceleration by obstacles

    Full text link
    We explore a surprising phenomenon in which an obstruction accelerates, rather than decelerates, a moving flexible object. It has been claimed that the right kind of discrete chain falling onto a table falls \emph{faster} than a free-falling body. We confirm and quantify this effect, reveal its complicated dependence on angle of incidence, and identify multiple operative mechanisms. Prior theories for direct impact onto flat surfaces, which involve a single constitutive parameter, match our data well if we account for a characteristic delay length that must impinge before the onset of excess acceleration. Our measurements provide a robust determination of this parameter. This supports the possibility of modeling such discrete structures as continuous bodies with a complicated constitutive law of impact that includes angle of incidence as an input.Comment: small changes and corrections, added reference

    Towards Rapid Parameter Estimation on Gravitational Waves from Compact Binaries using Interpolated Waveforms

    Full text link
    Accurate parameter estimation of gravitational waves from coalescing compact binary sources is a key requirement for gravitational-wave astronomy. Evaluating the posterior probability density function of the binary's parameters (component masses, sky location, distance, etc.) requires computing millions of waveforms. The computational expense of parameter estimation is dominated by waveform generation and scales linearly with the waveform computational cost. Previous work showed that gravitational waveforms from non-spinning compact binary sources are amenable to a truncated singular value decomposition, which allows them to be reconstructed via interpolation at fixed computational cost. However, the accuracy requirement for parameter estimation is typically higher than for searches, so it is crucial to ascertain that interpolation does not lead to significant errors. Here we provide a proof of principle to show that interpolated waveforms can be used to recover posterior probability density functions with negligible loss in accuracy with respect to non-interpolated waveforms. This technique has the potential to significantly increase the efficiency of parameter estimation.Comment: 7 pages, 2 figure

    Lifetime quenching in Yb doped fibres

    No full text
    We have discovered that in ytterbium-doped silica fibres the excited state lifetime of a fraction of the Yb ions can be quenched to a very small value, leading to a strong unbleachable loss. This unexpected behaviour seems to be caused by some, yet unidentified, impurity or structural defect. It is of considerable relevance for various Yb doped lasers and-amplifiers including Er:Yb codoped fibres as used in telecommunication amplifiers although it should also be emphasized that fibres can be produced that are free from the quenching effect

    Association of molecules using a resonantly modulated magnetic field

    Full text link
    We study the process of associating molecules from atomic gases using a magnetic field modulation that is resonant with the molecular binding energy. We show that maximal conversion is obtained by optimising the amplitude and frequency of the modulation for the particular temperature and density of the gas. For small modulation amplitudes, resonant coupling of an unbound atom pair to a molecule occurs at a modulation frequency corresponding to the sum of the molecular binding energy and the relative kinetic energy of the atom pair. An atom pair with an off-resonant energy has a probability of association which oscillates with a frequency and time-varying amplitude which are primarily dependent on its detuning. Increasing the amplitude of the modulation tends to result in less energetic atom pairs being resonantly coupled to the molecular state, and also alters the dynamics of the transfer from continuum states with off-resonant energies. This leads to maxima and minima in the total conversion from the gas as a function of the modulation amplitude. Increasing the temperature of the gas leads to an increase in the modulation frequency providing the best fit to the thermal distribution, and weakens the resonant frequency dependence of the conversion. Mean-field effects can alter the optimal modulation frequency and lead to the excitation of higher modes. Our simulations predict that resonant association can be effective for binding energies of order hĂ—1h \times 1 MHz.Comment: 8 pages latex, figures revised, references updated and typos correcte

    Raman amplification and pulsed lasing in cladding-pumped germanosilicate fiber

    No full text
    We report for the first time Raman amplification in a cladding-pumped fiber. The double-clad germanosilicate fiber was pumped by a Q-switched Er-Yb co-doped fiber laser at 1570 nm. The power conversion efficiency was up to 36%, with a slope of 64%

    Anomalous curvature evolution and geometric regularization of energy focusing in the snapping dynamics of a flexible body

    Full text link
    We examine the focusing of kinetic energy and the amplification of various quantities during the snapping motion of the free end of a flexible structure. This brief but violent event appears to be a regularized finite-time singularity, with remarkably large spikes in velocity, acceleration, and tension easily induced by generic initial and boundary conditions. A numerical scheme for the inextensible string equations is validated against available experimental data for a falling chain and further employed to explore the phenomenon. We determine that the discretization of the equations, equivalent to the physically discrete problem of a chain, does not provide the regularizing length scale, which in the absence of other physical effects must then arise from the geometry of the problem. An analytical solution for a geometrically singular limit, a falling perfectly-folded string, accounts surprisingly well for the scalings of several quantities in the numerics, but can only indirectly suggest a behavior for the curvature, one which seems to explain prior experimental data but does not correspond to the evolution of the curvature peak in our system, which instead displays a newly observed anomalously slow scaling. A simple model, incorporating only knowledge of the initial conditions along with the anomalous and singular-limit scalings, provides reasonable estimates for the amplifications of relevant quantities. This is a first step to predict and harness arbitrarily large energy focusing in structures, with a practical limit set only by length scales present in the discrete mechanical system or the initial conditions.Comment: revised text and figure
    • …
    corecore