23 research outputs found

    Chemically modulated graphene quantum dot for tuning the photoluminescence as novel sensory probe

    Get PDF
    A band gap tuning of environmental-friendly graphene quantum dot (GQD) becomes a keen interest for novel applications such as photoluminescence (PL) sensor. Here, for tuning the band gap of GQD, a hexafluorohydroxypropanyl benzene (HFHPB) group acted as a receptor of a chemical warfare agent was chemically attached on the GQD via the diazonium coupling reaction of HFHPB diazonium salt, providing new HFHPB-GQD material. With a help of the electron withdrawing HFHPB group, the energy band gap of the HFHPB-GQD was widened and its PL decay life time decreased. As designed, after addition of dimethyl methyl phosphonate (DMMP), the PL intensity of HFHPB-GQD sensor sharply increased up to approximately 200% through a hydrogen bond with DMMP. The fast response and short recovery time was proven by quartz crystal microbalance (QCM) analysis. This HFHPB-GQD sensor shows highly sensitive to DMMP in comparison with GQD sensor without HFHPB and graphene. In addition, the HFHPB-GQD sensor showed high selectivity only to the phosphonate functional group among many other analytes and also stable enough for real device applications. Thus, the tuning of the band gap of the photoluminescent GQDs may open up new promising strategies for the molecular detection of target substrates. © The Author(s) 20166511sciescopu

    Nano-to-microporous networks via inkjet printing of ZnO nanoparticles/graphene hybrid for ultraviolet photodetectors

    Get PDF
    Inkjet-printed photodetectors have gained enormous attention over the past decade. However, device performance is limited without postprocessing, such as annealing and UV exposure. In addition, it is difficult to manipulate the surface morphology of the printed film using an inkjet printer because of the limited options of low viscosity ink solutions. Here, we employ a concept involving the control of the inkjet-printed film morphology via modulation of cosolvent vapor pressure and surface tension for the creation of a high-performance ZnO-based photodetector on a flexible substrate. The solvent boiling point across different cosolvent systems is found to affect the film morphology, which results in not only distinct photoresponse time but also photodetectivity. ZnO-based photodetectors were printed using different solvents, which display a fast photoresponse in low-boiling point solvents because of the low carbon residue and larger photodetectivity in high-boiling point solvent systems due to the porous structure. The porous structure is obtained using both gas–liquid surface tension differences and solid–liquid surface differences, and the size of porosity is modulated from nanosize to microsize depending on the ratio between two solvents or two nanomaterials. Moreover, the conductive nature of graphene enhances the transport behavior of the photocarrier, which enables a high-performance photodetector with high photoresponsivity (7.5 × 102AW–1) and fast photoresponse (0.18 s) to be achieved without the use of high-boiling point solvents

    Truly form-factor–free industrially scalable system integration for electronic textile architectures with multifunctional fiber devices

    Get PDF
    Funding Information: This work was supported by the European Commission (H2020, 1D-NEON, grant agreement ID: 685758). J.M.K. and L.G.O. acknowledge the support from the U.K. Research and Innovation (EPSRC, EP/P027628/1). We thank Y. Bernstein and J. Faulkner for helping with grammar check. Funding Information: Acknowledgments Funding:ThisworkwassupportedbytheEuropeanCommission(H2020,1D-NEON,grant agreementID:685758).J.M.K.andL.G.O.acknowledgethesupportfromtheU.K.Researchand Innovation(EPSRC,EP/P027628/1).W ethankY .BernsteinandJ.Faulknerforhelpingwith grammarcheck.Authorcontributions:S.L.andJ.M.K.conceivedtheproject.S.L.,L.G.O.,P .B., R.Martins,andJ.M.K.supervisedtheproject.S.L.andH.L.developedF-PD.S.L.,Y .-W .L., G.-H.A., D.-W .S., J.I.S.,andS.C.developedF-SC.C.L.F ., A.S.,R.I.,P .B., andR.Martinsdevelopedfiber transistor.S.L.,H.L.,andS.C.developedF-LED.ThefiberdeviceswereevaluatedbyS.L.,H.W .C., D.-W .S., H.L.,S.J.,S.D.H.,S.Y .B., S.Z.,W .H.-C., Y .-H.S., X.-B.F ., T .H.L., J.-W .J., andY .K. The developmentofweavingprocesswasconductedbyS.L.,H.W .C., F .M.M., P .J., andV .G.C. Thelaser interconnectionwasdevelopedbyS.L.,H.W .C., K.U.,M.E.,andM.S.Thetextiledemonstrations werecharacterizedbyS.L.,H.W .C., D.-W .S., J.Y ., S.S.,U.E.,S.N.,A.C.,A.M.,R.Momentè,J.G.,N.D., S.M.,C.-H.K.,M.L.,A.N.,D.J.,M.C.,andY .C. ThismanuscriptwaswrittenbyS.L.andJ.M.K.and reviewed by H.W .C., D.-W .S., M.C.,L.G.O., P .B., E.F ., and G.A.J.A. All authors discussed the results andcommentedonthemanuscript.Competinginterests:Theauthorsdeclarethattheyhave nocompetinginterests.Dataandmaterialsavailability:Alldataneededtoevaluatethe conclusionsinthepaperarepresentinthepaperand/ortheSupplementaryMaterials. Publisher Copyright: Copyright © 2023 The Authors, some rights reserved.An integrated textile electronic system is reported here, enabling a truly free form factor system via textile manufacturing integration of fiber-based electronic components. Intelligent and smart systems require freedom of form factor, unrestricted design, and unlimited scale. Initial attempts to develop conductive fibers and textile electronics failed to achieve reliable integration and performance required for industrial-scale manufacturing of technical textiles by standard weaving technologies. Here, we present a textile electronic system with functional one-dimensional devices, including fiber photodetectors (as an input device), fiber supercapacitors (as an energy storage device), fiber field-effect transistors (as an electronic driving device), and fiber quantum dot light-emitting diodes (as an output device). As a proof of concept applicable to smart homes, a textile electronic system composed of multiple functional fiber components is demonstrated, enabling luminance modulation and letter indication depending on sunlight intensity.publishersversionpublishe

    Modeling Electrical Percolation to optimize the Electromechanical Properties of CNT/Polymer Composites in Highly Stretchable Fiber Strain Sensors

    Get PDF
    Abstract: A simulation model of electrical percolation through a three-dimensional network of curved CNTs is developed in order to analyze the electromechanical properties of a highly stretchable fiber strain sensor made of a CNT/polymer composite. Rigid-body movement of the curved CNTs within the polymer matrix is described analytically. Random arrangements of CNTs within the composite are generated by a Monte-Carlo simulation method and a union-find algorithm is utilized to investigate the network percolation. Consequently, the strain-induced resistance change curves are obtained in a wide strain range of the composite. In order to compare our model with experimental results, two CNT/polymer composite fibers were fabricated and tested as strain sensors. Their effective CNT volume fractions are estimated by comparing the experimental data with our simulation model. The results confirm that the proposed simulation model reproduces well the experimental data and is useful for predicting and optimizing the electromechanical characteristics of highly stretchable fiber strain sensors based on CNT/polymer composites

    Energy/Charge Transfer Modulation with Spacer Ligands for Highly Emissive Quantum Dot-Polymer Blend

    Full text link
    © 2021 American Chemical Society.A blend of perovskite quantum dots (QDs) and a hole transport layer (HTL) is a feasible candidate to solve the long-standing issues in light-emitting diodes (LEDs) such as charge injection, energy state matching, and defect passivation. However, QD:HTL blend structures for QD-based LEDs suffer from fast charge and energy transfers due to an inhomogeneous distribution of QDs and the HTL matrix. Here we report new cross-linkable spacer ligands between QDs and TFB that result in a highly emissive QD:TFB-blended LED device. We synthesize three representative spacer ligands to control the charge and energy transfers between QDs and the HTL. The first spacer ligand is used for controlling the molecular distance between QDs and TFB, and the second spacer ligand is designed to investigate how molecular interaction between QDs and the spacer ligand affects the optical property of the QD:TFB blend. Subsequently, the best spacer ligand, a 10-((2-benzoylbenzoyl)oxy)decanoic acid, is designed to anchor TFB (via a benzophenone group) and simultaneously bond to QDs (with a carboxylic acid functional group). The carboxylic acid group strongly interacts with QDs, dramatically improving the cross-linking rate between QDs and TFB. Due to the direct interaction between QDs and TFB, hole carriers can be effectively injected to perovskite QDs through the conductive backbone of TFB, resulting in the highest luminance values of 10917 cd/m2 at 7.4 V due to carrier injection balance. This is at least 10 times better LED performance compared with a pristine QD device.11Nsciescopu

    Ferroelectric Induced UV Light-Responsive Memory Devices with Low Dark Current

    Full text link
    We developed solution-processed hybrid photodetectors with a poly (9-vinylcarbazole)/zinc oxide nanoparticle photoactive layer and a poly (vinylidene fluoride-co-trifluoroethylene) ferroelectric copolymer buffer layer on flexible plastic substrates. The presence of a ferroelectric-poling interface layer significantly enhanced the charge transfer and responsivity of the photodetectors under ultraviolet (UV, 365 nm) light exposure. The responsivity of the device reached 250 mA/W at a reverse bias of 5 V and incident light intensity of 27.5 μW/cm2. This responsivity was four times higher than that of a device without the ferroelectric copolymer layer (64 mA/W) under the same conditions. The response time of the device to incident UV light also improved from 322 to 34 ms with the addition of the ferroelectric copolymer layer. In addition, the flexible device exhibited a stable performance in an air environment up to a maximum strain of 0.3 under bending stress. Finally, a UV-light-responsive memory device was successfully fabricated by using the developed hybrid photodetector and liquid crystals. This device showed a colour change from white to black upon UV illumination, and the on-state of the device was maintained for 30 s without light exposure owing to the polarization of poly (vinylidene fluoride-co-trifluoroethylene)

    The effect of the dopant's reactivity for high-performance 2D MoS2 thin-film transistor

    Full text link
    © 2020 Springer Nature Switzerland AG. Part of Springer Nature. There are many studies on the solution-processed thin-film transistor (TFT) using transition metal dichalcogenide (TMD) materials. However, it is hard to control the electrical property of chemically exfoliated TMD materials compared to the chemical vapor deposition TMD. An investigation into the electrical modulation behavior of exfoliated two-dimensional (2D) material is important to fabricate well-modulated electronic devices via solution processing. Here, we report the effects of reactivity of organic dopants on MoS(2)and investigate how the chemical doping behavior influences the electrical properties of MoS2. The band state of dopants, which is related to the electron-withdrawing and donating behavior of chemical dopant, provides a proportional shift in the threshold voltages (V-th) of their field-effect transistors (FETs). However, on/off current ratio (I-on/I-off) and mobility (mu) are strongly influenced by the defect density depending on the reactivity of doping reaction, rather than the band state of organic dopants. Through the in-depth study on the doping reaction, we fabricate a FET and a TFT, having high mobility and a relatively high on/off ratio (10(4)) using a solution process.11Nsciescopu

    Moving beyond flexible to stretchable conductive electrodes using metal nanowires and graphenes

    Full text link
    Stretchable and/or flexible electrodes and their associated electronic devices have attracted great interest because of their possible applications in high-end technologies such as lightweight, large area, wearable, and biointegrated devices. In particular, metal nanowires and graphene derivatives are chosen for electrodes because they show low resistance and high mechanical stability. Here, we review stretchable and flexible soft electrodes by discussing in depth the intrinsic properties of metal NWs and graphenes that are driven by their dimensionality. We investigate these properties with respect to electronics, optics, and mechanics from a chemistry perspective and discuss currently unsolved issues, such as how to maintain high conductivity and simultaneous high mechanical stability. Possible applications of stretchable and/or flexible electrodes using these nanodimensional materials are summarized at the end of this review. © The Royal Society of Chemistry 2016126271sciescopu

    Flexible and Stretchable Optoelectronic Devices using Silver Nanowires and Graphene

    Full text link
    Many studies have accompanied the emergence of a great interest in flexible or/and stretchable devices for new applications in wearable and futuristic technology, including human-interface devices, robotic skin, and biometric devices, and in optoelectronic devices. Especially, new nanodimensional materials enable flexibility or stretchability to be brought based on their dimensionality. Here, the emerging field of flexible devices is briefly introduced using silver nanowires and graphene, which are famous nanomaterials for the use of transparent conductive electrodes, as examples, and their unique functions originating from the intrinsic property of these nanomaterials are highlighted. It is thought that this work will evoke more interest and idea exchanges in this emerging field and hopefully can trigger a breakthrough on a new type of optoelectronics and optogenetic devices in the near future © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim144491sciescopu
    corecore