82 research outputs found

    Properties of fly ash geopolymer paste containing Portland cement

    Get PDF
    AbstractThis article presents the effect of ordinary Portland cement (OPC) replacement on low calcium fly ash (FAF)and high calcium fly ash (FAC) geopolymer paste. Fly ash was replaced with OPC at the rate of 5, 10 and 15% by weightof binder. Sodium silicate (Na2SiO3) and 10 molar sodium hydroxide (NaOH) solutions were used as the alkaline solutionin the reaction. The Na2SiO3/NaOH ratio of 0.67 and the liquid/binder (L/B) ratio of 0.50 and the curing at ambienttemperature were used for all of mixtures. The results found that the level replacement of OPC increase showed thecompressive strength tended to increased. The compressive strength of low calcium fly ash (FAF) and high calcium flyash (FAC) geopolymer paste at 7 days with 15% OPC replacement were 22 and 34 MPa, respectively. In addition, themicrostructure analysis indicated that the increase of OPC replacement resulted in the addition formation of calciumsilicate hydrate co-exists with the aluminosilicate geopolymer products. This results lead to overall increase in thecompressive strength of fly ash geopolymer products

    Influence of Portland Cement Replacement and Sand to Binder Ratio on Slant Shear Strength between Concrete Substrate and Geopolymer

    Get PDF
    āļšāļ—āļ„āļąāļ”āļĒāđˆāļ­āļšāļ—āļ„āļ§āļēāļĄāļ™āļĩāđ‰āļĻāļķāļāļĐāļēāļ­āļīāļ—āļ˜āļīāļžāļĨāļ‚āļ­āļ‡āļāļēāļĢāđāļ—āļ™āļ—āļĩāđˆāļ›āļđāļ™āļ‹āļĩāđ€āļĄāļ™āļ•āđŒāļ›āļ­āļĢāđŒāļ•āđāļĨāļ™āļ”āđŒāđāļĨāļ°āļ­āļąāļ•āļĢāļēāļŠāđˆāļ§āļ™āļ—āļĢāļēāļĒāļ•āđˆāļ­āļ§āļąāļŠāļ”āļļāļ›āļĢāļ°āļŠāļēāļ™āļ—āļĩāđˆāļĄāļĩāļ•āđˆāļ­āļāļģāļĨāļąāļ‡āļĢāļąāļšāđāļĢāļ‡āđ€āļ‰āļ·āļ­āļ™āļ­āļąāļ”āļĢāļ°āļŦāļ§āđˆāļēāļ‡āļ„āļ­āļ™āļāļĢāļĩāļ•āļāļąāļšāļˆāļĩāđ‚āļ­āđ‚āļžāļĨāļīāđ€āļĄāļ­āļĢāđŒāļĄāļ­āļĢāđŒāļ•āđ‰āļēāļĢāđŒ āđ‚āļ”āļĒāđ€āļ–āđ‰āļēāļĨāļ­āļĒāļ–āļđāļāđāļ—āļ™āļ—āļĩāđˆāļ”āđ‰āļ§āļĒāļ›āļđāļ™āļ‹āļĩāđ€āļĄāļ™āļ•āđŒāļ›āļ­āļĢāđŒāļ•āđāļĨāļ™āļ”āđŒÂ Â  āļĢāđ‰āļ­āļĒāļĨāļ° 0, 5, 10 āđāļĨāļ° 15 āđāļĨāļ°āļ—āļģāļāļēāļĢāđāļ›āļĢāļœāļąāļ™āļ­āļąāļ•āļĢāļēāļŠāđˆāļ§āļ™āļ—āļĢāļēāļĒāļ•āđˆāļ­āļ§āļąāļŠāļ”āļļāļ›āļĢāļ°āļŠāļēāļ™āđ€āļ—āđˆāļēāļāļąāļš 1.00, 1.25 āđāļĨāļ° 1.50 āļŠāļēāļĢāļĨāļ°āļĨāļēāļĒāļ”āđˆāļēāļ‡āļ—āļĩāđˆāđƒāļŠāđ‰āđƒāļ™āļāļēāļĢāđ€āļāļīāļ”āļ›āļāļīāļāļīāļĢāļīāļĒāļēāđ„āļ”āđ‰āđāļāđˆ āļŠāļēāļĢāļĨāļ°āļĨāļēāļĒāđ‚āļ‹āđ€āļ”āļĩāļĒāļĄāļ‹āļīāļĨāļīāđ€āļāļ•āđāļĨāļ°āļŠāļēāļĢāļĨāļ°āļĨāļēāļĒāđ‚āļ‹āđ€āļ”āļĩāļĒāļĄāđ„āļŪāļ”āļĢāļ­āļāđ„āļ‹āļ”āđŒāđ€āļ‚āđ‰āļĄāļ‚āđ‰āļ™ 6 āđ‚āļĄāļĨāļēāļĢāđŒ āđ‚āļ”āļĒāđƒāļŠāđ‰āļ­āļąāļ•āļĢāļēāļŠāđˆāļ§āļ™āļŠāļēāļĢāļĨāļ°āļĨāļēāļĒāđ‚āļ‹āđ€āļ”āļĩāļĒāļĄāļ‹āļīāļĨāļīāđ€āļāļ•āļ•āđˆāļ­āļŠāļēāļĢāļĨāļ°āļĨāļēāļĒāđ‚āļ‹āđ€āļ”āļĩāļĒāļĄāđ„āļŪāļ”āļĢāļ­āļāđ„āļ‹āļ”āđŒāđ€āļ—āđˆāļēāļāļąāļš 2.0 āļ­āļąāļ•āļĢāļēāļŠāđˆāļ§āļ™āļ‚āļ­āļ‡āđ€āļŦāļĨāļ§āļ•āđˆāļ­āļ§āļąāļŠāļ”āļļāļ›āļĢāļ°āļŠāļēāļ™āđ€āļ—āđˆāļēāļāļąāļš 0.60 āđāļĨāļ°āļšāđˆāļĄāļ—āļĩāđˆāļ­āļļāļ“āļŦāļ āļđāļĄāļīāļŦāđ‰āļ­āļ‡āļ—āļļāļāļ­āļąāļ•āļĢāļēāļŠāđˆāļ§āļ™āļœāļŠāļĄ āļœāļĨāļāļēāļĢāļ—āļ”āļŠāļ­āļšāđāļŠāļ”āļ‡āđƒāļŦāđ‰āđ€āļŦāđ‡āļ™āļ§āđˆāļēāļāļģāļĨāļąāļ‡āļĢāļąāļšāđāļĢāļ‡āđ€āļ‰āļ·āļ­āļ™āļ­āļąāļ”āļĢāļ°āļŦāļ§āđˆāļēāļ‡āļ„āļ­āļ™āļāļĢāļĩāļ•āļāļąāļšāļˆāļĩāđ‚āļ­āđ‚āļžāļĨāļīāđ€āļĄāļ­āļĢāđŒāļĄāļ­āļĢāđŒāļ•āđ‰āļēāļĢāđŒāļĄāļĩāđāļ™āļ§āđ‚āļ™āđ‰āļĄāđ€āļžāļīāđˆāļĄāļ‚āļķāđ‰āļ™āļ•āļēāļĄāļ›āļĢāļīāļĄāļēāļ“āļāļēāļĢāđāļ—āļ™āļ—āļĩāđˆāļ›āļđāļ™āļ‹āļĩāđ€āļĄāļ™āļ•āđŒāļ›āļ­āļĢāđŒāļ•āđāļĨāļ™āļ”āđŒāļ—āļĩāđˆāđ€āļžāļīāđˆāļĄāļ‚āļķāđ‰āļ™ āļ­āļąāļ•āļĢāļēāļŠāđˆāļ§āļ™āļ—āļĢāļēāļĒāļ•āđˆāļ­āļ§āļąāļŠāļ”āļļāļ›āļĢāļ°āļŠāļēāļ™āļ—āļĩāđˆāđ€āļžāļīāđˆāļĄāļ‚āļķāđ‰āļ™āļŠāđˆāļ‡āļœāļĨāđƒāļŦāđ‰āļāļģāļĨāļąāļ‡āļĢāļąāļšāđāļĢāļ‡āđ€āļ‰āļ·āļ­āļ™āļ­āļąāļ”āļĢāļ°āļŦāļ§āđˆāļēāļ‡āļ„āļ­āļ™āļāļĢāļĩāļ•āļāļąāļšāļˆāļĩāđ‚āļ­āđ‚āļžāļĨāļīāđ€āļĄāļ­āļĢāđŒāļĄāļ­āļĢāđŒāļ•āđ‰āļēāļĢāđŒÂ Â Â  āļĄāļĩāđāļ™āļ§āđ‚āļ™āđ‰āļĄāđ€āļžāļīāđˆāļĄāļ‚āļķāđ‰āļ™ āđāļ•āđˆāļ­āļĒāđˆāļēāļ‡āđ„āļĢāļāđ‡āļ•āļēāļĄāđ€āļĄāļ·āđˆāļ­āđƒāļŠāđ‰āļ­āļąāļ•āļĢāļēāļŠāđˆāļ§āļ™āļ—āļĢāļēāļĒāļ•āđˆāļ­āļ§āļąāļŠāļ”āļļāļ›āļĢāļ°āļŠāļēāļ™āđ€āļ—āđˆāļēāļāļąāļš 1.50 āļāļģāļĨāļąāļ‡āļĢāļąāļšāđāļĢāļ‡āđ€āļ‰āļ·āļ­āļ™āļ­āļąāļ” āļĄāļĩāđāļ™āļ§āđ‚āļ™āđ‰āļĄāļĨāļ”āļĨāļ‡ āļ‹āļķāđˆāļ‡āļ›āļĢāļīāļĄāļēāļ“āļāļēāļĢāđāļ—āļ™āļ—āļĩāđˆāļ›āļđāļ™āļ‹āļĩāđ€āļĄāļ™āļ•āđŒāļ›āļ­āļĢāđŒāļ•āđāļĨāļ™āļ”āđŒāđƒāļ™āđ€āļ–āđ‰āļēāļĨāļ­āļĒāļĢāđ‰āļ­āļĒāļĨāļ° 15 āđāļĨāļ°āļ­āļąāļ•āļĢāļēāļŠāđˆāļ§āļ™āļ—āļĢāļēāļĒāļ•āđˆāļ­ āļ§āļąāļŠāļ”āļļāļ›āļĢāļ°āļŠāļēāļ™āđ€āļ—āđˆāļēāļāļąāļš 1.00 āđ€āļ›āđ‡āļ™āļ­āļąāļ•āļĢāļēāļŠāđˆāļ§āļ™āļ—āļĩāđˆāļŠāļēāļĄāļēāļĢāļ–āđƒāļŦāđ‰āļ„āđˆāļēāļāļģāļĨāļąāļ‡āļĢāļąāļšāđāļĢāļ‡āđ€āļ‰āļ·āļ­āļ™āļ­āļąāļ”āļĢāļ°āļŦāļ§āđˆāļēāļ‡āļ„āļ­āļ™āļāļĢāļĩāļ•āļāļąāļšāļˆāļĩāđ‚āļ­āđ‚āļžāļĨāļīāđ€āļĄāļ­āļĢāđŒāđ„āļ”āđ‰āļŠāļđāļ‡āļŠāļļāļ”AbstractThis article presents the influence of both Portland cement replacement and sand to binder ratio (S/B) on slant shear strength between concrete substrate and geopolymer mortar. Fly ash (FA) was replaced with Portland cement (PC) at the dosages of 0, 5, 10 and 15% with various sand to binder ratios of 1.00, 1.25 and 1.50, respectively. The alkali solution for used as liquid alkali were sodium silicate (Na2SiO3) and 10 molar sodium hydroxide (NaOH) solutions. The Na2SiO3/NaOH ratio of 2.0 and the liquid/binder (L/B) ratio of 0.60 and cure at ambient temperature were used in all mixture. Test results indicated that the slant shear strength between concrete substrate and geopolymer mortar tends to increase with increase in PC replacement. While the S/B ratio increased, the slant shear strength between concrete substrate and geopolymer mortar tends to increase. However at S/B ratio of 1.50, the slant shear strength tends to decrease. The 15% PC replacement with S/B ratio of 1.00 gave the highest slant shear strength between concrete substrate and geopolymer

    Carbon dioxide sequestration of fly ash alkaline based mortars with recycled aggregates and different sodium hydroxide concentrations: Properties, durability, carbon footprint, and cost analysis

    Get PDF
    This chapter discloses results of an investigation concerning carbon dioxide sequestration on fly ash/waste glass alkaline-based mortars with recycled aggregates and different sodium hydroxide concentrations. Properties, durability, carbon footprint, and cost analysis were studied on it. Mixtures using a sodium hydroxide concentration of 8M and the additive calcium hydroxide show the best performance and the lowest carbon footprint. Simulations using a carbon tax of 0.0347 Euro/kg show no influence on the cost of the mixtures while the use of the carbon tax of 0.206 Euro/kg show an increase in the cost-efficiency of mixtures, even those using a sodium hydroxide concentration of 8M and additive calcium hydroxide.The authors would like to acknowledge the nancial support of the Foundation for Science and Technology (FCT) in the frame of project IF/00706/2014-UM.2.15.info:eu-repo/semantics/publishedVersio

    āļ›āļąāļˆāļˆāļąāļĒāļ‚āļ­āļ‡āļŠāļēāļĢāļĨāļ°āļĨāļēāļĒāļ”āđˆāļēāļ‡āļ•āđˆāļ­āļŠāļĄāļšāļąāļ•āļīāļ—āļēāļ‡āļāļēāļĒāļ āļēāļžāđāļĨāļ°āđ‚āļ„āļĢāļ‡āļŠāļĢāđ‰āļēāļ‡āļ—āļēāļ‡āļˆāļļāļĨāļ āļēāļ„ āļ‚āļ­āļ‡āđ€āļ–āđ‰āļēāļĨāļ­āļĒāļˆāļĩāđ‚āļ­āđ‚āļžāļĨāļīāđ€āļĄāļ­āļĢāđŒāđāļ—āļ™āļ—āļĩāđˆāļ”āđ‰āļ§āļĒāļ›āļđāļ™āļ‹āļĩāđ€āļĄāļ™āļ•āđŒāļ›āļ­āļĢāđŒāļ•āđāļĨāļ™āļ”āđŒ Factors of Alkali Solutions Affecting Physical Properties and Microstructure of Fly Ash Geopolymer MortarContaining Portland Cement

    No full text
    āļšāļ—āļ„āļąāļ”āļĒāđˆāļ­āļšāļ—āļ„āļ§āļēāļĄāļ™āļĩāđ‰āđ€āļ›āđ‡āļ™āļāļēāļĢāļĻāļķāļāļĐāļēāļ›āļąāļˆāļˆāļąāļĒāļ‚āļ­āļ‡āļŠāļēāļĢāļĨāļ°āļĨāļēāļĒāļ”āđˆāļēāļ‡āļ•āđˆāļ­āļŠāļĄāļšāļąāļ•āļīāļ—āļēāļ‡āļāļēāļĒāļ āļēāļžāđāļĨāļ°āđ‚āļ„āļĢāļ‡āļŠāļĢāđ‰āļēāļ‡āļ—āļēāļ‡āļˆāļļāļĨāļ āļēāļ„āļ‚āļ­āļ‡Â Â Â  āđ€āļ–āđ‰āļēāļĨāļ­āļĒāļˆāļĩāđ‚āļ­āđ‚āļžāļĨāļīāđ€āļĄāļ­āļĢāđŒāđāļ—āļ™āļ—āļĩāđˆāļ”āđ‰āļ§āļĒāļ›āļđāļ™āļ‹āļĩāđ€āļĄāļ™āļ•āđŒāļ›āļ­āļĢāđŒāļ•āđāļĨāļ™āļ”āđŒ āđ€āļ–āđ‰āļēāļĨāļ­āļĒāļ–āļđāļāđāļ—āļ™āļ—āļĩāđˆāļ”āđ‰āļ§āļĒāļ›āļđāļ™āļ‹āļĩāđ€āļĄāļ™āļ•āđŒāļ›āļ­āļĢāđŒāļ•āđāļĨāļ™āļ”āđŒāļĢāđ‰āļ­āļĒāļĨāļ° 0, 5, 10, 15 āđāļĨāļ° 20 āđ‚āļ”āļĒāļ™āđ‰āļģāļŦāļ™āļąāļāļ§āļąāļŠāļ”āļļāļ›āļĢāļ°āļŠāļēāļ™ āļŠāļēāļĢāļĨāļ°āļĨāļēāļĒāļ”āđˆāļēāļ‡āļ—āļĩāđˆāđƒāļŠāđ‰āđ€āļ›āđ‡āļ™āļ‚āļ­āļ‡āđ€āļŦāļĨāļ§āļ›āļĢāļ°āļāļ­āļšāļ”āđ‰āļ§āļĒāļŠāļēāļĢāļĨāļ°āļĨāļēāļĒāđ‚āļ‹āđ€āļ”āļĩāļĒāļĄāđ„āļŪāļ”āļĢāļ­āļāđ„āļ‹āļ”āđŒÂ  āļ—āļĩāđˆāļ„āļ§āļēāļĄāđ€āļ‚āđ‰āļĄāļ‚āđ‰āļ™ 10 āđ‚āļĄāļĨāļēāļĢāđŒāđ€āļžāļĩāļĒāļ‡āļ­āļĒāđˆāļēāļ‡āđ€āļ”āļĩāļĒāļ§ (NH) āļŠāļēāļĢāļĨāļ°āļĨāļēāļĒāđ‚āļ‹āđ€āļ”āļĩāļĒāļĄāđ„āļŪāļ”āļĢāļ­āļāđ„āļ‹āļ”āđŒāđāļĨāļ°āļŠāļēāļĢāļĨāļ°āļĨāļēāļĒāđ‚āļ‹āđ€āļ”āļĩāļĒāļĄāļ‹āļīāļĨāļīāđ€āļāļ•āļœāļŠāļĄāļāļąāļ™ (NHWG) āđāļĨāļ°āļŠāļēāļĢāļĨāļ°āļĨāļēāļĒāđ‚āļ‹āđ€āļ”āļĩāļĒāļĄāļ‹āļīāļĨāļīāđ€āļāļ•āđ€āļžāļĩāļĒāļ‡āļ­āļĒāđˆāļēāļ‡āđ€āļ”āļĩāļĒāļ§ (WG) āļœāļĨāļāļēāļĢāļ—āļ”āļŠāļ­āļšāđāļŠāļ”āļ‡āđƒāļŦāđ‰āđ€āļŦāđ‡āļ™āļ§āđˆāļēāļŠāļēāļĢāļĨāļ°āļĨāļēāļĒāļ”āđˆāļēāļ‡āļ—āļĩāđˆāđƒāļŠāđ‰āđƒāļ™āļāļēāļĢāļœāļĨāļīāļ•āļˆāļĩāđ‚āļ­āđ‚āļžāļĨāļīāđ€āļĄāļ­āļĢāđŒāļŠāđˆāļ‡āļœāļĨāļ•āđˆāļ­āļŠāļĄāļšāļąāļ•āļīāļ—āļēāļ‡āļāļēāļĒāļ āļēāļžāđāļĨāļ°āđ‚āļ„āļĢāļ‡āļŠāļĢāđ‰āļēāļ‡āļ—āļēāļ‡āļˆāļļāļĨāļ āļēāļ„āļ‚āļ­āļ‡āđ€āļ–āđ‰āļēāļĨāļ­āļĒāļˆāļĩāđ‚āļ­āđ‚āļžāļĨāļīāđ€āļĄāļ­āļĢāđŒāđāļ—āļ™āļ—āļĩāđˆāļ”āđ‰āļ§āļĒāļ›āļđāļ™āļ‹āļĩāđ€āļĄāļ™āļ•āđŒāļ›āļ­āļĢāđŒāļ•āđāļĨāļ™āļ”āđŒ āļ‹āļķāđˆāļ‡āļŠāļēāļĢāļĨāļ°āļĨāļēāļĒāļ”āđˆāļēāļ‡āđ€āļ›āđ‡āļ™āļ›āļąāļˆāļˆāļąāļĒāļ—āļĩāđˆāļĄāļĩāļ„āļ§āļēāļĄāļŠāļģāļ„āļąāļāļ•āđˆāļ­āļ›āļāļīāļāļīāļĢāļīāļĒāļēāļ‚āļ­āļ‡āļĢāļ°āļšāļšāļˆāļĩāđ‚āļ­āđ‚āļžāļĨāļīāđ€āļĄāļ­āļĢāđŒ āđ‚āļ”āļĒāļāļēāļĢāđƒāļŠāđ‰āļŠāļēāļĢāļĨāļ°āļĨāļēāļĒ NHWG āļŠāļēāļĄāļēāļĢāļ–āđƒāļŦāđ‰āļāļģāļĨāļąāļ‡āļĢāļąāļšāđāļĢāļ‡āļ­āļąāļ”āđāļĨāļ°āđ‚āļĄāļ”āļđāļĨāļąāļŠāļĒāļ·āļ”āļŦāļĒāļļāđˆāļ™āļ‚āļ­āļ‡āļˆāļĩāđ‚āļ­āđ‚āļžāļĨāļīāđ€āļĄāļ­āļĢāđŒāļĄāļ­āļĢāđŒāļ•āđ‰āļēāļĢāđŒāļŠāļđāļ‡āļāļ§āđˆāļēāļāļēāļĢāđƒāļŠāđ‰āļŠāļēāļĢāļĨāļ°āļĨāļēāļĒNH āđāļĨāļ°āļāļēāļĢāđƒāļŠāđ‰āļŠāļēāļĢāļĨāļ°āļĨāļēāļĒ WG āļ™āļ­āļāļˆāļēāļāļ™āļĩāđ‰āļāļēāļĢāđƒāļŠāđ‰āļŠāļēāļĢāļĨāļ°āļĨāļēāļĒāđ‚āļ‹āđ€āļ”āļĩāļĒāļĄāđ„āļŪāļ”āļĢāļ­āļāđ„āļ‹āļ”āđŒāđāļĨāļ°āļŠāļēāļĢāļĨāļ°āļĨāļēāļĒāđ‚āļ‹āđ€āļ”āļĩāļĒāļĄāļ‹āļīāļĨāļīāđ€āļāļ•āļœāļŠāļĄāļāļąāļ™āļĒāļąāļ‡āļžāļšāļœāļĨāļķāļāļ‚āļ­āļ‡āļŠāļēāļĢāļ›āļĢāļ°āļāļ­āļšāđāļ„āļĨāđ€āļ‹āļĩāļĒāļĄāļ‹āļīāļĨāļīāđ€āļāļ•āđ„āļŪāđ€āļ”āļĢāļ•āđāļĨāļ°āļŠāđˆāļ§āļ™āļ­āļŠāļąāļ“āļāļēāļ™āļ‚āļ­āļ‡āļˆāļĩāđ‚āļ­āđ‚āļžāļĨāļīāđ€āļĄāļ­āļĢāđŒāđƒāļ™āļĢāļđāļ›āđāļšāļšāļāļēāļĢāđ€āļĨāļĩāđ‰āļĒāļ§āđ€āļšāļ™āļ‚āļ­āļ‡āļĢāļąāļ‡āļŠāļĩāđ€āļ­āđ‡āļāļ‹āđŒāļĄāļēāļāļāļ§āđˆāļēāļāļēāļĢāđƒāļŠāđ‰āļŠāļēāļĢāļĨāļ°āļĨāļēāļĒ NH āđāļĨāļ°āļāļēāļĢāđƒāļŠāđ‰āļŠāļēāļĢāļĨāļ°āļĨāļēāļĒ WG āļŠāđˆāļ‡āļœāļĨāđƒāļŦāđ‰āļĄāļĩāļāļģāļĨāļąāļ‡āļ­āļąāļ”āđāļĨāļ°āđ‚āļĄāļ”āļđāļĨāļąāļŠāļĒāļ·āļ”āļŦāļĒāļļāđˆāļ™āļ—āļĩāđˆāļŠāļđāļ‡ āļŠāļ­āļ”āļ„āļĨāđ‰āļ­āļ‡āļāļąāļšāļœāļĨāļāļēāļĢāļ—āļ”āļŠāļ­āļšāđ‚āļ„āļĢāļ‡āļŠāļĢāđ‰āļēāļ‡āļ—āļēāļ‡āļˆāļļāļĨāļ āļēāļ„āļ‚āļ­āļ‡ āđ€āļ–āđ‰āļēāļĨāļ­āļĒāļˆāļĩāđ‚āļ­āđ‚āļžāļĨāļīāđ€āļĄāļ­āļĢāđŒāđ€āļžāļŠāļ•āđŒāļ—āļĩāđˆāļĄāļĩāļ„āļ§āļēāļĄāļŦāļ™āļēāđāļ™āđˆāļ™āđāļĨāļ°āļĄāļĩāļ„āļ§āļēāļĄāđ€āļ›āđ‡āļ™āđ€āļ™āļ·āđ‰āļ­āđ€āļ”āļĩāļĒāļ§āļāļąāļ™āļĄāļēāļāļāļ§āđˆāļēAbstractThis article investigated the factors of alkali activated solutions affecting mechanical properties and microstructure of fly ash (FA) geopolymer containing Portland cement type I (PC). The PC was used to replace FA at the dosages of 0, 5, 10, 15 and 20% by weight of binder. The alkali activated solution of 10 molar of sodium hydroxide only (NH), 10 molar of sodium hydroxide and sodium silicate solution (NHWG), and sodium silicate solution only (WG) were used as the liquid portion in the mixture. The test results indicated that the type of alkali activated solutions for producing the geopolymer affecting mechanical properties and microstructure of FA geopolymer containing PC. The alkali activators significantly affected the reaction products of geopolymer matrix. The use of NHWG solution gave higher compressive strength and modulus of elasticity of FA geopolymer mortar than those of NH solution only and WG solution only. Moreover, the use of NHWG solution was found to have more peak of calcium silicate hydrate and amorphous phase of FA geopolymer containing PC in XRD pattern than those of NH solution and WG solution only. This was corresponded to SEM results of FA geopolymer paste, which appeared denser and more homogeneous matrix

    Effect of high-speed mixing on properties of high calcium fly ash geopolymer paste

    No full text
    Geopolymers are produced by mixing alumino-silicate materials with alkaline activators, and the mixing process has a considerable impact on the dissolution of raw materials. This research studies the effects of mixing time, with a high-speed centrifuge mixer (1,000 rpm), on the setting and hardening properties of high calcium fly ash-based geopolymer paste. Setting time, strength, phase development, microstructure and porosity of the pastes were investigated. The results indicated that the increase in mixing time retarded the setting time which provided time for dissolution of starting materials. The optimum mixing time at high speed should be 1 min in order to obtain high strength and dense matrix in contrast to 10 min for the normal mixing. The mixing time also had an effect on the pore structure hence the total porosity of the paste

    Influence of Alkali Solution Types on Compressive Strength and Microstructure of Geopolymer Manufactured From Low Calcium Fly Ash Containing Ground Blast Furnace Slag

    No full text
    āļšāļ—āļ„āļąāļ”āļĒāđˆāļ­āļšāļ—āļ„āļ§āļēāļĄāļ™āļĩāđ‰āļĻāļķāļāļĐāļēāļ­āļīāļ—āļ˜āļīāļžāļĨāļ‚āļ­āļ‡āļŠāļ™āļīāļ”āļ‚āļ­āļ‡āļŠāļēāļĢāļĨāļ°āļĨāļēāļĒāļ”āđˆāļēāļ‡āļ•āđˆāļ­āļāļģāļĨāļąāļ‡āļ­āļąāļ”āđāļĨāļ°āđ‚āļ„āļĢāļ‡āļŠāļĢāđ‰āļēāļ‡āļ—āļēāļ‡āļˆāļļāļĨāļ āļēāļ„āļ‚āļ­āļ‡āļˆāļĩāđ‚āļ­āļžāļ­āļĨāļīāđ€āļĄāļ­āļĢāđŒāļˆāļēāļāđ€āļ–āđ‰āļēāļĨāļ­āļĒāđāļ„āļĨāđ€āļ‹āļĩāļĒāļĄāļ•āđˆāļģāļœāļŠāļĄāļ•āļ°āļāļĢāļąāļ™āđ€āļ•āļēāļ–āļĨāļļāļ‡āđ€āļŦāļĨāđ‡āļ āđ€āļ–āđ‰āļēāļĨāļ­āļĒāļ–āļđāļāđāļ—āļ™āļ—āļĩāđˆāļ”āđ‰āļ§āļĒāļ•āļ°āļāļĢāļąāļ™āđ€āļ•āļēāļ–āļĨāļļāļ‡āđ€āļŦāļĨāđ‡āļāļĢāđ‰āļ­āļĒāļĨāļ° 0, 50 āđāļĨāļ° 100 āđ‚āļ”āļĒāļ™āđ‰āļģāļŦāļ™āļąāļāļ‚āļ­āļ‡āļ§āļąāļŠāļ”āļļāļ›āļĢāļ°āļŠāļēāļ™ āđ‚āļ”āļĒāđ€āļ–āđ‰āļēāļĨāļ­āļĒāđāļĨāļ°āļ•āļ°āļāļĢāļąāļ™āđ€āļ•āļēāļ–āļĨāļļāļ‡āđ€āļŦāļĨāđ‡āļāļ–āļđāļāļāļĢāļ°āļ•āļļāđ‰āļ™āļāļēāļĢāđ€āļāļīāļ”āļ›āļāļīāļāļīāļĢāļīāļĒāļēāļ”āđ‰āļ§āļĒ āļŠāļēāļĢāļĨāļ°āļĨāļēāļĒāđ‚āļ‹āđ€āļ”āļĩāļĒāļĄāđ„āļŪāļ”āļĢāļ­āļāđ„āļ‹āļ”āđŒāļ—āļĩāđˆāļ„āļ§āļēāļĄāđ€āļ‚āđ‰āļĄāļ‚āđ‰āļ™ 10 āđ‚āļĄāļĨāļēāļĢāđŒāđ€āļžāļĩāļĒāļ‡āļ­āļĒāđˆāļēāļ‡āđ€āļ”āļĩāļĒāļ§ (NH) āļŠāļēāļĢāļĨāļ°āļĨāļēāļĒāđ‚āļ‹āđ€āļ”āļĩāļĒāļĄāđ„āļŪāļ”āļĢāļ­āļāđ„āļ‹āļ”āđŒāđāļĨāļ°āļŠāļēāļĢāļĨāļ°āļĨāļēāļĒāđ‚āļ‹āđ€āļ”āļĩāļĒāļĄāļ‹āļīāļĨāļīāđ€āļāļ•āļœāļŠāļĄāļāļąāļ™ (NHNS) āđāļĨāļ°āļŠāļēāļĢāļĨāļ°āļĨāļēāļĒāđ‚āļ‹āđ€āļ”āļĩāļĒāļĄāļ‹āļīāļĨāļīāđ€āļāļ•āđ€āļžāļĩāļĒāļ‡āļ­āļĒāđˆāļēāļ‡āđ€āļ”āļĩāļĒāļ§ (NS) āļŠāļģāļŦāļĢāļąāļšāđƒāļŠāđ‰āđ€āļ›āđ‡āļ™āļ‚āļ­āļ‡āđ€āļŦāļĨāļ§āđƒāļ™āļŠāđˆāļ§āļ™āļœāļŠāļĄ āđƒāļ™āļāļēāļĢāļĻāļķāļāļĐāļēāļ„āļĢāļąāđ‰āļ‡āļ™āļĩāđ‰āļ­āļąāļ•āļĢāļēāļŠāđˆāļ§āļ™āļ‚āļ­āļ‡āđ€āļŦāļĨāļ§āļ•āđˆāļ­āļ§āļąāļŠāļ”āļļāļ›āļĢāļ°āļŠāļēāļ™āđ€āļ—āđˆāļēāļāļąāļš 0.60 āđāļĨāļ°āļšāđˆāļĄāļ—āļĩāđˆāļ­āļļāļ“āļŦāļ āļđāļĄāļīāļŦāđ‰āļ­āļ‡ āļ—āļļāļāļ­āļąāļ•āļĢāļēāļŠāđˆāļ§āļ™āļœāļŠāļĄ āļœāļĨāļāļēāļĢāļ—āļ”āļŠāļ­āļšāđāļŠāļ”āļ‡āđƒāļŦāđ‰āđ€āļŦāđ‡āļ™āļ§āđˆāļēāļāļēāļĢāđ€āļžāļīāđˆāļĄāļ‚āļķāđ‰āļ™āļ‚āļ­āļ‡āļ•āļ°āļāļĢāļąāļ™āđ€āļ•āļēāļ–āļĨāļļāļ‡āđ€āļŦāļĨāđ‡āļāļŠāđˆāļ§āļĒāļ›āļĢāļąāļšāļ›āļĢāļļāļ‡āļāļģāļĨāļąāļ‡āļ­āļąāļ”āđāļĨāļ°āđ‚āļ„āļĢāļ‡āļŠāļĢāđ‰āļēāļ‡āļ—āļēāļ‡āļˆāļļāļĨāļ āļēāļ„āļ‚āļ­āļ‡āļˆāļĩāđ‚āļ­āļžāļ­āļĨāļīāđ€āļĄāļ­āļĢāđŒāđ€āļžāļŠāļ•āđŒ āđ€āļ™āļ·āđˆāļ­āļ‡āļ”āđ‰āļ§āļĒāđ€āļ›āđ‡āļ™āļāļēāļĢāđ€āļžāļīāđˆāļĄāđāļ„āļĨāđ€āļ‹āļĩāļĒāļĄāļ‹āļīāļĨāļīāđ€āļāļ•āđ„āļŪāđ€āļ”āļĢāļ•āļ āļēāļĒāđƒāļ™āļĢāļ°āļšāļšāļ‚āļ­āļ‡ āļˆāļĩāđ‚āļ­āļžāļ­āļĨāļīāđ€āļĄāļ­āļĢāđŒ āļ‚āļ“āļ°āļ—āļĩāđˆāļŠāļēāļĢāļĨāļ°āļĨāļēāļĒāļ”āđˆāļēāļ‡āļŠāđˆāļ‡āļœāļĨāļ•āđˆāļ­āļ›āļāļīāļāļīāļĢāļīāļĒāļēāļ‚āļ­āļ‡āļˆāļĩāđ‚āļ­āļžāļ­āļĨāļīāđ€āļĄāļ­āļĢāđŒAbstractThis article investigated the influences of alkali solution on compressive strength and microstructure of geopolymer manufactured from low fly ash (FA) containing ground blast furnace slag (GBFS). The FA was replaced with GBFS at the dosages of 0, 50 and 100 by weight of binder. The FA-GBFS blends were activated with 10 molar sodium hydroxide solutions directly (NH), sodium silicate and sodium hydroxide solutions together (NHNS), and sodium silicate directly (NS) for using as the liquid portion in the mixture. Alkaline liquid/binder ratio of 0.60 and curing at ambient temperature of 25 oC were selected for all mixtures. The results indicated that the increase in GBFS enhanced the compressive strength and microstructure of geopolymer pastes due to additional calcium silicate hydrate into the geopolymer matrix. While the alkali solutions had significance effects on the geopolymerization products

    Influence of portland cement replacement in high calcium fly ash geopolymer paste

    No full text
    This article presents the influence of ordinary Portland cement (OPC) replacement in high calcium fly ash (FA) geopolymer paste. FA was used to replace OPC at the rate of 5, 10 and 15% by mass of binder. Sodium silicate (Na2SiO3) and 10 molar sodium hydroxide (NaOH) solutions were used as the alkaline solution in the reaction. The Na2SiO3/NaOH ratio of 2.0 and the liquid/binder (L/B) ratio of 0.60 were used in all mixtures. The results of increase OPC replacement, the setting time and compressive strain capacity decreased while the compressive strength and modulus of elasticity increased. The compressive strength and modulus of elasticity at 28 days of geopolymer pastes with 15% OPC replacement were 36.7 MPa and 13,300 MPa, respectively
    • â€Ķ
    corecore