427 research outputs found
Impact of the COVID-19 pandemic on children with and without affective dysregulation and their families
Analyzing COVID-19-related stress in children with affective dysregulation (AD) seems especially interesting, as these children typically show heightened reactivity to potential stressors and an increased use of maladaptive emotion regulation strategies. Children in out-of-home care often show similar characteristics to those with AD. Since COVID-19 has led to interruptions in psychotherapy for children with mental health problems and to potentially reduced resources to implement treatment strategies in daily life in families or in out-of-home care, these children might show a particularly strong increase in stress levels. In this study, 512 families of children without AD and 269 families of children with AD reported on COVID-19-related stress. The sample comprised screened community, clinical, and out-of-home care samples. Sociodemographic factors, characteristics of child and caregiver before the pandemic, and perceived change in external conditions due to the pandemic were examined as potential risk or protective factors. Interestingly, only small differences emerged between families of children with and without AD or between subsamples: families of children with AD and families in out-of-home care were affected slightly more, but in few domains. Improvements and deteriorations in treatment-related effects balanced each other out. Overall, the most stable and strongest risk factor for COVID-19-related stress was perceived negative change in external conditions—particularly family conditions and leisure options. Additionally, caregiver characteristics emerged as risk factors across most models. Actions to support families during the pandemic should, therefore, facilitate external conditions and focus on caregiver characteristic to reduce familial COVID-19-related stress. Trial registration: German Clinical Trials Register (DRKS), ADOPT Online: DRKS00014963 registered 27 June 2018, ADOPT Treatment: DRKS00013317 registered 27 September 2018, ADOPT Institution: DRKS00014581 registered 04 July 2018
Screening for affective dysregulation in school-aged children: relationship with comprehensive measures of affective dysregulation and related mental disorders
Affective dysregulation (AD) is characterized by irritability, severe temper outbursts, anger, and unpredictable mood swings, and is typically classified as a transdiagnostic entity. A reliable and valid measure is needed to adequately identify children at risk of AD. This study sought to validate a parent-rated screening questionnaire, which is part of the comprehensive Diagnostic Tool for Affective Dysregulation in Children (DADYS-Screen), by analyzing relationships with comprehensive measures of AD and related mental disorders in a community sample of children with and without AD. The sample comprised 1114 children aged 8–12 years and their parents. We used clinical, parent, and child ratings for our analyses. Across all raters, the DADYS-Screen showed large correlations with comprehensive measures of AD. As expected, correlations were stronger for measures of externalizing symptoms than for measures of internalizing symptoms. Moreover, we found negative associations with emotion regulation strategies and health-related quality of life. In receiver operating characteristic (ROC) analyses, the DADYS-Screen adequately identified children with AD and provided an optimal cut-off. We conclude that the DADYS-Screen appears to be a reliable and valid measure to identify school-aged children at risk of AD
Disorder Induced Ferromagnetism in Restricted Geometries
We study the influence of on-site disorder on the magnetic properties of the
ground state of the infinite Hubbard model. We find that for one
dimensional systems disorder has no influence, while for two dimensional
systems disorder enhances the spin polarization of the system. The tendency of
disorder to enhance magnetism in the ground state may be relevant to recent
experimental observations of spin polarized ground states in quantum dots and
small metallic grains.Comment: 4 pages, 4 figure
A graph-search framework for associating gene identifiers with documents
BACKGROUND: One step in the model organism database curation process is to find, for each article, the identifier of every gene discussed in the article. We consider a relaxation of this problem suitable for semi-automated systems, in which each article is associated with a ranked list of possible gene identifiers, and experimentally compare methods for solving this geneId ranking problem. In addition to baseline approaches based on combining named entity recognition (NER) systems with a "soft dictionary" of gene synonyms, we evaluate a graph-based method which combines the outputs of multiple NER systems, as well as other sources of information, and a learning method for reranking the output of the graph-based method. RESULTS: We show that named entity recognition (NER) systems with similar F-measure performance can have significantly different performance when used with a soft dictionary for geneId-ranking. The graph-based approach can outperform any of its component NER systems, even without learning, and learning can further improve the performance of the graph-based ranking approach. CONCLUSION: The utility of a named entity recognition (NER) system for geneId-finding may not be accurately predicted by its entity-level F1 performance, the most common performance measure. GeneId-ranking systems are best implemented by combining several NER systems. With appropriate combination methods, usefully accurate geneId-ranking systems can be constructed based on easily-available resources, without resorting to problem-specific, engineered components
Computing Branching Distances Using Quantitative Games
We lay out a general method for computing branching distances between labeled
transition systems. We translate the quantitative games used for defining these
distances to other, path-building games which are amenable to methods from the
theory of quantitative games. We then show for all common types of branching
distances how the resulting path-building games can be solved. In the end, we
achieve a method which can be used to compute all branching distances in the
linear-time--branching-time spectrum
Long-term (trophic) purinergic signalling: purinoceptors control cell proliferation, differentiation and death
The purinergic signalling system, which uses purines and pyrimidines as chemical transmitters, and purinoceptors as effectors, is deeply rooted in evolution and development and is a pivotal factor in cell communication. The ATP and its derivatives function as a 'danger signal' in the most primitive forms of life. Purinoceptors are extraordinarily widely distributed in all cell types and tissues and they are involved in the regulation of an even more extraordinary number of biological processes. In addition to fast purinergic signalling in neurotransmission, neuromodulation and secretion, there is long-term (trophic) purinergic signalling involving cell proliferation, differentiation, motility and death in the development and regeneration of most systems of the body. In this article, we focus on the latter in the immune/defence system, in stratified epithelia in visceral organs and skin, embryological development, bone formation and resorption, as well as in cancer. Cell Death and Disease (2010) 1, e9; doi:10.1038/cddis.2009.11; published online 14 January 201
Clusters of galaxies : observational properties of the diffuse radio emission
Clusters of galaxies, as the largest virialized systems in the Universe, are
ideal laboratories to study the formation and evolution of cosmic
structures...(abridged)... Most of the detailed knowledge of galaxy clusters
has been obtained in recent years from the study of ICM through X-ray
Astronomy. At the same time, radio observations have proved that the ICM is
mixed with non-thermal components, i.e. highly relativistic particles and
large-scale magnetic fields, detected through their synchrotron emission. The
knowledge of the properties of these non-thermal ICM components has increased
significantly, owing to sensitive radio images and to the development of
theoretical models. Diffuse synchrotron radio emission in the central and
peripheral cluster regions has been found in many clusters. Moreover
large-scale magnetic fields appear to be present in all galaxy clusters, as
derived from Rotation Measure (RM) studies. Non-thermal components are linked
to the cluster X-ray properties, and to the cluster evolutionary stage, and are
crucial for a comprehensive physical description of the intracluster medium.
They play an important role in the cluster formation and evolution. We review
here the observational properties of diffuse non-thermal sources detected in
galaxy clusters: halos, relics and mini-halos. We discuss their classification
and properties. We report published results up to date and obtain and discuss
statistical properties. We present the properties of large-scale magnetic
fields in clusters and in even larger structures: filaments connecting galaxy
clusters. We summarize the current models of the origin of these cluster
components, and outline the improvements that are expected in this area from
future developments thanks to the new generation of radio telescopes.Comment: Accepted for the publication in The Astronomy and Astrophysics
Review. 58 pages, 26 figure
Milestones in the Observations of Cosmic Magnetic Fields
Magnetic fields are observed everywhere in the universe. In this review, we
concentrate on the observational aspects of the magnetic fields of Galactic and
extragalactic objects. Readers can follow the milestones in the observations of
cosmic magnetic fields obtained from the most important tracers of magnetic
fields, namely, the star-light polarization, the Zeeman effect, the rotation
measures (RMs, hereafter) of extragalactic radio sources, the pulsar RMs, radio
polarization observations, as well as the newly implemented sub-mm and mm
polarization capabilities.
(Another long paragraph is omitted due to the limited space here)Comment: Invited Review (ChJA&A); 32 pages. Sorry if your significant
contributions in this area were not mentioned. Published pdf & ps files (with
high quality figures) now availble at http://www.chjaa.org/2002_2_4.ht
Complex c-di-GMP Signaling Networks Mediate Transition between Virulence Properties and Biofilm Formation in Salmonella enterica Serovar Typhimurium
Upon Salmonella enterica serovar Typhimurium infection of the gut, an early line of defense is the gastrointestinal epithelium which senses the pathogen and intrusion along the epithelial barrier is one of the first events towards disease. Recently, we showed that high intracellular amounts of the secondary messenger c-di-GMP in S. typhimurium inhibited invasion and abolished induction of a pro-inflammatory immune response in the colonic epithelial cell line HT-29 suggesting regulation of transition between biofilm formation and virulence by c-di-GMP in the intestine. Here we show that highly complex c-di-GMP signaling networks consisting of distinct groups of c-di-GMP synthesizing and degrading proteins modulate the virulence phenotypes invasion, IL-8 production and in vivo colonization in the streptomycin-treated mouse model implying a spatial and timely modulation of virulence properties in S. typhimurium by c-di-GMP signaling. Inhibition of the invasion and IL-8 induction phenotype by c-di-GMP (partially) requires the major biofilm activator CsgD and/or BcsA, the synthase for the extracellular matrix component cellulose. Inhibition of the invasion phenotype is associated with inhibition of secretion of the type three secretion system effector protein SipA, which requires c-di-GMP metabolizing proteins, but not their catalytic activity. Our findings show that c-di-GMP signaling is at least equally important in the regulation of Salmonella-host interaction as in the regulation of biofilm formation at ambient temperature
Comparing Petri Net and Activity Diagram Variants for Workflow Modelling:A Quest for Reactive Petri Nets
Petri net variants are widely used as a workflow modelling technique. Recently, UMLa ctivity diagrams have been used for the same purpose, even though the syntax and semantics of activity diagrams has not been yet fully worked out. Nevertheless, activity diagrams seem very similar to Petri nets and on the surface, one may think that they are variants of each other. To substantiate or deny this claim, we need to formalise the intended semantics of activity diagrams and then compare this with various Petri net semantics. In previous papers we have defined two formal semantics for UMLact ivity diagrams that are intended for workflow modelling. In this paper, we discuss the design choices that underlie these two semantics and investigate whether these design choices can be met in low-level and high-level Petri net semantics. We argue that the main difference between the Petri net semantics and our semantics of UML act ivity diagrams is that the Petri net semantics models resource usage of closed, active systems that are non-reactive, whereas our semantics of UMLact ivity diagrams models open, reactive systems. Since workflow systems are open, reactive systems, we conclude that Petri nets cannot model workflows accurately, unless they are extended with a syntax and semantics for reactivity
- …