22 research outputs found

    Least-squares Fourier phase estimation from the modulo 2Pi bispectrum phase

    Get PDF
    The recovery of Fourier phases from measurements of the bispectrum occupies a vital role in many astronomical speckle imaging schemes. In arecent paper [J. Opt. Soc. Am. A 7, 14 (1990)] it was suggested that a least-squares solution to this problem must fail if the bispectrum phase is known only modulo 2π. Here an alternative nonlinear least-squares algorithm is presented that differs from the linear method discussed in the aforementioned paper and that permits the fitting of Fourier phases directly to modulo 2π measurements of the bispectrum phase, thus eliminating any need for phase unwrapping. Numerical simulations of this method confirm that it is reliable and robust in the presence of noise and verify its enhanced performance when compared with a linear least-squares method that includes the unwrapping of the bispectral phase before Fourier phase retrieval

    Fringe tracking and spatial filtering: phase jumps and dropouts

    Full text link
    Fringe tracking in interferometers is typically analyzed with the implicit assumption that there is a single phase associated with each telescope in the array. If the telescopes have apertures significantly larger than r0 and only partial adaptive optics correction, then the phase measured by a fringe sensor may differ significantly from the "piston" component of the aperture phase. In some cases, speckle noise will cause "branch points" in the measured phase as a function of time, causing large and sudden jumps in the phase. We present simulations showing these effects in order to understand their implications for the design of fringe tracking algorithms.Comment: 9 pages, to be published in Proc. SPIE conference 7013 "Optical and Infrared Interferometry", Schoeller, Danchi, and Delplancke (eds.

    Diffraction-limited imaging with partially redundant masks. I. Infrared imaging of bright objects

    Get PDF
    The utility of partially redundant pupil geometries has been studied in the context of near-infrared speckle imaging with ground-based telescopes. Using both numerical simulations and experimental data collected with a 4-m-class telescope, we find that the decrease in redundancy resulting from apodizing the telescope pupil results in an enhancement of the quality of reconstructed images at high light levels. This improvement in imaging fidelity is particularly valuable when short-term variations in the statistics of the atmosphere make the seeing calibration of speckle interferograms difficult. However, the use of an apodizing mask necessarily restricts the faintest source that can be imaged, leading to a loss in sensitivity of one to two magnitudes. For many of the brighter near-infrared astrophysical sources in the sky that have been the subject of previous speckle-imaging studies, the use of a partially redundant pupil is expected to enhance the fidelity of the imaging procedure considerably

    Diffraction-limited imaging with partially redundant masks: I. Optical imaging of faint sources

    Get PDF
    In a recent paper [J. Opt. Soc. Am. A 9, 203 (1992)] the benefits of pupil apodization were examined for the near-infrared imaging of bright sources. In the current paper we extend these considerations to optical speckle imaging, in which photon noise rather than detector readout noise is important. We demonstrate that a one-dimensional pupil geometry (i.e., a thin slit) has several advantages over an unapodized aperture when faint sources are being observed through atmospheric turbulence. The use of a slit aperture does not decrease the signal-to-noise ratios of the power-spectrum and bispectrum measurements, and in many cases it increases them, despite the large reduction in signal level. The disadvantage of this apodization is a reduction in Fourier-plane coverage, which must be compensated for by observations with the slit aligned at several position angles. The performance of many of the current generation of photon-counting imaging detectors deteriorates at the high counting rates that can be experienced even when one is observing sources that are approaching the limiting magnitude of the speckle imaging technique. Under such conditions, we recommend the use of an apodized pupil, in contrast to the current preference for employing a neutral-density filter to reduce the detector count rate

    Diffraction-limited imaging at IR wavelengths using aperture masks and fully filled apertures

    Get PDF
    The performance of a phase recovery algorithm developed for speckle data collected using a pupil-plane mask has been investigated for use at near-infrared wavelengths. The method, based on the radio-astronomical self-calibration technique, has been tested alongside a state-of-the-art implementation of the Knox-Thompson scheme using both simulated and real specklegrams. Results indicate that the new procedure is as effective as the Knox-Thompson based image reconstruction scheme and is applicable to a wide range of astrophysically interesting sources

    A new path to first light for the Magdalena Ridge Observatory Interferometer

    Get PDF
    The Magdalena Ridge Observatory Interferometer (MROI) was the most ambitious infrared interferometric facility conceived of in 2003 when funding began. Today, despite having suffered some financial short-falls, it is still one of the most ambitious interferometric imaging facilities ever designed. With an innovative approach to attaining the original goal of fringe tracking to H = 14th^{th} magnitude via completely redesigned mobile telescopes, and a unique approach to the beam train and delay lines, the MROI will be able to image faint and complex objects with milliarcsecond resolutions for a fraction of the cost of giant telescopes or space-based facilities. The design goals of MROI have been optimized for studying stellar astrophysical processes such as mass loss and mass transfer, the formation and evolution of YSOs and their disks, and the environs of nearby AGN. The global needs for Space Situational Awareness (SSA) have moved to the forefront in many communities as Space becomes a more integral part of a national security portfolio. These needs drive imaging capabilities ultimately to a few tens of centimeter resolution at geosynchronous orbits. Any array capable of producing images on faint and complex geosynchronous objects in just a few hours will be outstanding not only as an astrophysical tool, but also for these types of SSA missions. With the recent infusion of new funding from the Air Force Research Lab (AFRL) in Albuquerque, NM, MROI will be able to attain first light, first fringes, and demonstrate bootstrapping with three telescopes by 2020. MROI’s current status along with a sketch of our activities over the coming 5 years will be presented, as well as clear opportunities to collaborate on various aspects of the facility as it comes online. Further funding is actively being sought to accelerate the capability of the array for interferometric imaging on a short time-scale so as to achieve the original goals of this ambitious facility.AFRL (Cooperative Agreement FA9453-15-2-0086 titled “Amplitude Interferometer Research for Geosynchronous Earth Orbit (GEO) Space Situational Awareness (SSA)”), Congressional Delegation of the State of New Mexico, Science and Technology Facilities CouncilThis is the author accepted manuscript. The final version is available from SPIE via http://dx.doi.org/10.1117/12.223391
    corecore