5 research outputs found

    Tumor targeted 4-1BB agonist antibody-albumin fusions with high affinity to FcRn induce anti-tumor immunity without toxicity.

    Get PDF
    Costimulation of tumor-infiltrating T lymphocytes by anti-4-1BB monoclonal antibodies (mAbs) has shown anti-tumor activity in human trials, but can be associated with significant off-tumor toxicities involving FcgR interactions. Here, we introduce albumin-fused mouse and human bispecific antibodies with clinically favorable pharmacokinetics designed to confine 4-1BB costimulation to the tumor microenvironment. These Fc-free 4-1BB agonists consist of an EGFR-specific VHH antibody, a 4-1BB-specific scFv, and a human albumin sequence engineered for high FcRn binding connected in tandem (LiTCo-Albu). We demonstrate in vitro cognate target engagement, EGFR-specific costimulatory activity, and FcRn-driven cellular recycling similar to non-fused FcRn high-binding albumin. The mouse LiTCo-Albu exhibited a prolonged circulatory half-life and in vivo tumor inhibition,with no indication of 4-1BBmAb-associated toxicity. Furthermore, we show a greater therapeutic effect when used in combination with PD-1-blocking mAbs. These findings demonstrate the feasibility of tumor-specific LiTCo- Albu antibodies for safe and effective costimulatory strategies in cancer immunotherapy.post-print2444 K

    Efficient preclinical treatment of cortical T cell acute lymphoblastic leukemia with T lymphocytes secreting anti-CD1a T cell engagers

    Full text link
    BACKGROUND: The dismal clinical outcome of relapsed/refractory (R/R) T cell acute lymphoblastic leukemia (T-ALL) highlights the need for innovative targeted therapies. Although chimeric antigen receptor (CAR)-engineered T cells have revolutionized the treatment of B cell malignancies, their clinical implementation in T-ALL is in its infancy. CD1a represents a safe target for cortical T-ALL (coT-ALL) patients, and fratricide-resistant CD1a-directed CAR T cells have been preclinically validated as an immunotherapeutic strategy for R/R coT-ALL. Nonetheless, T-ALL relapses are commonly very aggressive and hyperleukocytic, posing a challenge to recover sufficient non-leukemic effector T cells from leukapheresis in R/R T-ALL patients. METHODS: We carried out a comprehensive study using robust in vitro and in vivo assays comparing the efficacy of engineered T cells either expressing a second-generation CD1a-CAR or secreting CD1a x CD3 T cell-engaging Antibodies (CD1a-STAb). RESULTS: We show that CD1a-T cell engagers bind to cell surface expressed CD1a and CD3 and induce specific T cell activation. Recruitment of bystander T cells endows CD1a-STAbs with an enhanced in vitro cytotoxicity than CD1a-CAR T cells at lower effector:target ratios. CD1a-STAb T cells are as effective as CD1a-CAR T cells in cutting-edge in vivo T-ALL patient-derived xenograft models. CONCLUSIONS: Our data suggest that CD1a-STAb T cells could be an alternative to CD1a-CAR T cells in coT-ALL patients with aggressive and hyperleukocytic relapses with limited numbers of non-leukemic effector T cellsResearch in LA-V laboratory is funded by the Spanish Ministry of Science and Innovation (PID2020-117323RB-100 and PDC2021-121711-100), and the Carlos III Health Institute (DTS20/00089), with European Regional Development Fund (FEDER) cofinancing; the Spanish Association Against Cancer (AECC PROYE19084ALVA) and the CRIS Cancer Foundation (FCRIS-2018-0042 and FCRIS2021-0090). Research in PM laboratory is supported by CERCA/Generalitat de Catalunya and Fundació Josep Carreras-Obra Social la Caixa for core support; 'la Caixa' Foundation under the agreement LCF/PR/HR19/52160011; the European Research Council grant (ERC-PoC-957466); the Spanish Ministry of Science and Innovation (PID2019-108160RB-I00); and the ISCIII-RICORS within the Next Generation EU program (plan de Recuperación, Transformación y Resilencia). MLT is supported by Spanish Ministry of Science and Innovation (PID2019-105623RB-I00) and the Spanish Association Against Cancer (CICPF18030TORI). PP is supported by Carlos III Health Institute (PI21-01834), with FEDER cofinancing and Fundación Ramón Areces. NT was supported by an FPU PhD fellowship from Spain's Ministerio de Universidades (FPU19/00039). OH was supported by an industrial PhD fellowship from the Comunidad de Madrid (IND2020/BMD-17668). LD-A was supported by a Rio Hortega fellowship from the Carlos III Health Institute (CM20/00004). VMD is supported by the Torres Quevedo subprogram of the State Research Agency of the Ministry of Science, Innovation and Universities (Ref. PTQ2020-011056). DSM is partially founded by a Sara Borrell fellowship from Carlos III Health Institute (CD19/00013

    Tumor targeted 4-1BB agonist antibody-albumin fusions with high affinity to FcRn induce anti-tumor immunity without toxicity

    Get PDF
    17 p.-4 fig.-1 tab.-1 grph. abst.Costimulation of tumor-infiltrating T lymphocytes by anti-4-1BB monoclonal antibodies (mAbs) has shown anti-tumor activity in human trials, but can be associated with significant off-tumor toxicities involving FcγR interactions. Here, we introduce albumin-fused mouse and human bispecific antibodies with clinically favorable pharmacokinetics designed to confine 4-1BB costimulation to the tumor microenvironment. These Fc-free 4-1BB agonists consist of an EGFR-specific VHH antibody, a 4-1BB-specific scFv, and a human albumin sequence engineered for high FcRn binding connected in tandem (LiTCo-Albu). We demonstrate in vitro cognate target engagement, EGFR-specific costimulatory activity, and FcRn-driven cellular recycling similar to non-fused FcRn high-binding albumin. The mouse LiTCo-Albu exhibited a prolonged circulatory half-life and in vivo tumor inhibition, with no indication of 4-1BB mAb-associated toxicity. Furthermore, we show a greater therapeutic effect when used in combination with PD-1-blocking mAbs. These findings demonstrate the feasibility of tumor-specific LiTCo-Albu antibodies for safe and effective costimulatory strategies in cancer immunotherapy.Financial support for this work was obtained from the MCIN/AEI/10.13039/501100011033 (SAF2017-89437-P and PDC2021-121711-100 to LA-V, PID2019-104544GB-I00 to CA, and PID2020-113225GB-I00 to FJB), partially supported by the European Regional Development Fund (ERDF); the Carlos III Health Institute (ISCIII) (PI19/00132 to LS; PI20/01030 to BB), partially supported by the ERDF; the ISCIII-RICORS within the Next Generation EU program (plan de Recuperación, Transformación y Resilencia); the Spanish Association Against Cancer (AECC 19084 to LA-V); the CRIS Cancer Foundation (FCRIS-2018-0042 and FCRIS-2021-0090 to LA-V), the BBVA Foundation (Ayudas Fundación BBVA a Equipos de Investigación Científica SARS-CoV-2 years COVID-19 to LA-V); and the Fundació “La Caixa” (HR21-00761 project IL7R_LungCan to LA-V). AD, OAM, and KAH were funded by the Novo Nordisk Foundation, Grant; CEMBID (Center for Multifunctional Biomolecular Drug Design, Grant Number: NNF17OC0028070). OH was supported by an industrial PhD fellowship from the Comunidad de Madrid (IND2020/BMD-17668). AE-L was supported industrial PhD fellowship from the Carlos III Health Institute (IFI18/00045). CD-A was supported by a predoctoral fellowship from the Spanish Ministry of Science Innovation and Universities (PRE2018-083445). LR-P was supported by a predoctoral fellowship from the Immunology Chair, Universidad Francisco de Vitoria/Merck. LD-A was supported by a Rio Hortega fellowship from the Carlos III Health Institute (CM20/00004).Peer reviewe

    A PD-L1/EGFR bispecific antibody combines immune checkpoint blockade and direct anti-cancer action for an enhanced anti-tumor response

    Get PDF
    Immune checkpoint blockade (ICB) with antibodies has shown durable clinical responses in a wide range of cancer types, but the overall response rate is still limited. Other effective therapeutic modalities to increase the ICB response rates are urgently needed. New bispecific antibody (bsAb) formats combining the ICB effect and a direct action on cancer cells could improve the efficacy of current immunotherapies. Here, we report the development of a PD-L1/EGFR symmetric bsAb by fusing a dual-targeting tandem trimmer body with the human IgG1 hinge and Fc regions. The bsAb was characterized in vitro and the antitumor efficacy was evaluated in humanized mice bearing xenografts of aggressive triple-negative breast cancer and lung cancer. The IgG-like hexavalent bsAb, designated IgTT-1E, was able to simultaneously bind both EGFR and PD-L1 antigens, inhibit EGF-mediated proliferation, effectively block PD-1/PD-L1 interaction, and induce strong antigen-specific antibody-dependent cellular cytotoxicity activity in vitro. Potent therapeutic efficacies of IgTT-1E in two different humanized mouse models were observed, where tumor growth control was associated with a significantly increased proportion of CD8+ T cells. These results support the development of IgTT-1E for the treatment of EGFR+ cancers.L.A-V. was supported by grants from the MCIN/AEI/10.13039/ 501100011033 (PID2020-117323RB-100 and PDC2021-121711-100), the Instituto de Salud Carlos III (DTS20/00089), the CRIS Cancer Foundation (FCRIS-2021-0090), the Spanish Association Against Cancer (PROYE19084ALVA), the Fundación ‘‘La Caixa’’ (HR21-00761 project IL7R_LungCan) and the Fundación de Investigación Biomédica 12 de Octubre Programa Investiga (2022-0082). B.B and L.S. were supported by grants PI20/01030 and PI19/00132 from the Instituto de Salud Carlos III (PI20/01030). FJB and MF-G were supported by grants PID2020- 113225GB-I00 and PRE2018-085788 funded by MCIN/AEI/10.13039/ 501100011033. L.R-P. was supported by a predoctoral fellowship from the Immunology Chair, Universidad Francisco de Vitoria/Merck. C. D-A. was supported by a predoctoral fellowship from the MCIN/AEI/ 10.13039/501100011033 (PRE2018-083445). L.D-A. was supported by a Rio Hortega fellowship from the Instituto de Salud Carlos III (CM20/ 00004). O.H. was supported by an industrial PhD fellowship from the Comunidad de Madrid (IND2020/BMD-17668). AE-L was supported industrial PhD fellowship from the Instituto de Salud Carlos III (IFI18/ 00045)Peer reviewe

    Running title: Non-toxic broad anti-tumor activity of an EGFR×4-1BB bispecific trimerbod

    Get PDF
    32 p.-4 fig.Purpose: The induction of 4-1BB signaling by agonistic antibodies can drive the activation and proliferation of effector T cells and thereby enhance a T-cell–mediated antitumor response. Systemic administration of anti-4-1BB–agonistic IgGs, although effective preclinically, has not advanced in clinical development due to their severe hepatotoxicity.Experimental Design: Here, we generated a humanized EGFR-specific 4-1BB-agonistic trimerbody, which replaces the IgG Fc region with a human collagen homotrimerization domain. It was characterized by structural analysis and in vitro functional studies. We also assessed pharmacokinetics, antitumor efficacy, and toxicity in vivo.Results: In the presence of a T-cell receptor signal, the trimerbody provided potent T-cell costimulation that was strictly dependent on 4-1BB hyperclustering at the point of contact with a tumor antigen-displaying cell surface. It exhibits significant antitumor activity in vivo, without hepatotoxicity, in a wide range of human tumors including colorectal and breast cancer cell-derived xenografts, and non–small cell lung cancer patient-derived xenografts associated with increased tumor-infiltrating CD8+ T cells. The combination of the trimerbody with a PD-L1 blocker led to increased IFNγ secretion in vitro and resulted in tumor regression in humanized mice bearing aggressive triple-negative breast cancer.Conclusions: These results demonstrate the nontoxic broad antitumor activity of humanized Fc-free tumor-specific 4-1BB-agonistic trimerbodies and their synergy with checkpoint blockers, which may provide a way to elicit responses in most patients with cancer while avoiding Fc-mediated adverse reactions.This work was supported by grants from the European Union [IACT Project (602262), H2020-iNEXT (1676)]; the Spanish Ministry of Science, Innovation and Universities and the Spanish Ministry of Economy and Competitiveness (SAF2017-89437-P, CTQ2017-83810-R, RTC-2016-5118-1, RTC-2017-5944-1), partially supported by the European Regional Development Fund; the Carlos III Health Institute (PI16/00357), co-founded by the Plan Nacional de Investigación and the European Union; the CRIS Cancer Foundation (FCRIS-IFI-2018); and the Spanish Association Against Cancer (AECC, 19084). C. Domínguez-Alonso was supported by a predoctoral fellowship from the Spanish Ministry of Science, Innovation and Universities (PRE2018-083445). M. Zonca was supported by the Torres Quevedo Program from the Spanish Ministry of Economy and Competitiveness, co-founded by the European Social Fund (PTQ-16-08340).Peer reviewe
    corecore