216 research outputs found
Significance of the entire C-terminus in biological activities mediated by the RON receptor tyrosine kinase and its oncogenic variant RON160
The RON receptor tyrosine kinase regulates epithelial cell homeostasis and tumorigenesis by transducing multiple signals through its functional domains. The present study was to determine the significance of the entire C-terminus in RON or its variant RON160-mediated activities related to cell motility and tumorigenesis. Analysis of protein phosphorylation revealed that elimination of the entire C-terminus significantly impairs the ligand-dependent or independent RON or RON160 phosphorylation and dimerization. Phosphorylation of downstream signaling proteins such as Erk1/2, AKT, and p38 MAP kinase was also diminished in cells expressing the C-terminus-free RON or RON160. These dysfunctional activities were accompanied with the inability of truncated RON or RON160 to mediate cytoplasmic β-catenin accumulation. Functional analysis further demonstrated that truncation of the C-terminus significantly impairs RON or RON160-mediated cell proliferation, morphological changes, and cellular migration. Significantly, oncogenic RON160-mediated tumor growth in athymic nude mice was lost after the deletion of the C-terminus. Thus, the C-terminus is a critical component of the RON receptor. The entire C-terminus is required for RON or RON160-mediated intracellular signaling events leading to various cellular activities
The monoclonal antibody Zt/f2 targeting RON receptor tyrosine kinase as potential therapeutics against tumor growth-mediated by colon cancer cells
<p>Abstract</p> <p>Background</p> <p>Overexpression of the RON receptor tyrosine kinase contributes to epithelial cell transformation, malignant progression, and acquired drug resistance. RON also has been considered as a potential target for therapeutic intervention. This study determines biochemical features and inhibitory activity of a mouse monoclonal antibody (mAb) Zt/f2 in experimental cancer therapy.</p> <p>Results</p> <p>Zt/f2 is a mouse IgG2a mAb that is highly specific and sensitive to human RON and its oncogenic variants such as RON160 (ED<sub>50 </sub>= 2.3 nmol/L). Receptor binding studies revealed that Zt/f2 interacts with an epitope(s) located in a 49 amino acid sequence coded by exon 11 in the RON β-chain extracellular sequences. This sequence is critical in regulating RON maturation and phosphorylation. Zt/f2 did not compete with ligand macrophage-stimulating protein for binding to RON; however, its engagement effectively induced RON internalization, which diminishes RON expression and impairs downstream signaling activation. These biochemical features provide the cellular basis for the use of Zt/f2 to inhibit tumor growth in animal model. Repeated administration of Zt/f2 as a single agent into Balb/c mice results in partial inhibition of tumor growth caused by transformed NIH-3T3 cells expressing oncogenic RON160. Colon cancer HT-29 cell-mediated tumor growth in athymic nude mice also was attenuated following Zt/f2 treatment. In both cases, ~50% inhibition of tumor growth as measured by tumor volume was achieved. Moreover, Zt/f2 in combination with 5-fluorouracil showed an enhanced inhibition effect of ~80% on HT-29 cell-mediated tumor growth <it>in vivo</it>.</p> <p>Conclusions</p> <p>Zt/f2 is a potential therapeutic mAb capable of inhibiting RON-mediated oncogenesis by colon cancer cells in animal models. The inhibitory effect of Zt/f2 <it>in vivo </it>in combination with chemoagent 5-fluorouracil could represent a novel strategy for future colon cancer therapy.</p
Isolated tracheal injury after whiplash
AbstractWhiplash, a sudden accelerationâdeceleration movement that can cause diverse symptoms such as neck pain, cervicogenic headache, restricted neck movement, tingling of the arms (central cord syndrome), and dizziness. However, laryngotracheal injuries after whiplash are extremely rare. We report the case of a 25-year-old Taiwanese female who presented to the emergency department with severe posterior midline neck pain after a rear-end motorcycle collision. Her C-spine X-ray showed no definite fracture; furthermore, her neck noncontrast-enhanced CT scan revealed paratracheal free air. She was discharged uneventfully after a 12-h observation period. Laryngotracheal injuries after whiplash, a hyperextensionâhyperflexion movement, are potentially life-threatening and could lead to airway obstruction. Such injuries should not be overlooked. To the best of our knowledge, this is the first case report of isolated laryngotracheal injury after whiplash
Association between Sex Hormone and Blood Uric Acid in Male Patients with Type 2 Diabetes
The association between serum uric acid (SUA) level and sexual dysfunction in patients with diabetes is not well characterized. Type 2 diabetes mellitus (T2DM) causes metabolic disorders, including abnormal serum uric acid (SUA) levels. In this study, we enrolled 205 male patients with T2DM and investigated the relationship between sex hormone levels and SUA. Patients were divided into four groups based on SUA quartiles. On the other hand, based on the total testosterone (TT) level, patients were divided into three groups; SUA and other laboratory indices were determined. Increase in SUA level was significantly associated with decreased levels of TT, luteinizing hormone, follicle-stimulating hormone, sex hormone-binding globulin, and increased levels of dehydroepiandrosterone, age, body mass index (BMI), waist circumference, glycated hemoglobin, serum creatinine, and HOMA-IR levels. SUA, waist circumference, BMI, and HOMA-IR showed a negative correlation with TT level, while age showed a positive correlation with TT level. SUA and body mass index were found to be risk factors for gonadal dysfunction. Therefore, we conclude that hypogonadism of male patients with T2DM is related to SUA level
Chaperones, Membrane Trafficking and Signal Transduction Proteins Regulate Zaire Ebola Virus trVLPs and Interact With trVLP Elements
Ebolavirus (EBOV) life cycle involves interactions with numerous host factors, but it remains poorly understood, as does pathogenesis. Herein, we synthesized 65 siRNAs targeting host genes mostly connected with aspects of the negative-sense RNA virus life cycle (including viral entry, uncoating, fusion, replication, assembly, and budding). We produced EBOV transcription- and replication-competent virus-like particles (trVLPs) to mimic the EBOV life cycle. After screening host factors associated with the trVLP life cycle, we assessed interactions of host proteins with trVLP glycoprotein (GP), VP40, and RNA by co-immunoprecipitation (Co-IP) and chromatin immunoprecipitation (ChIP). The results demonstrate that RNAi silencing with 11 siRNAs (ANXA5, ARFGAP1, FLT4, GRP78, HSPA1A, HSP90AB1, HSPA8, MAPK11, MEK2, NTRK1, and YWHAZ) decreased the replication efficiency of trVLPs. Co-IP revealed nine candidate host proteins (FLT4, GRP78, HSPA1A, HSP90AB1, HSPA8, MAPK11, MEK2, NTRK1, and YWHAZ) potentially interacting with trVLP GP, and four (ANXA5, GRP78, HSPA1A, and HSP90AB1) potentially interacting with trVLP VP40. Ch-IP identified nine candidate host proteins (ANXA5, ARFGAP1, FLT4, GRP78, HSPA1A, HSP90AB1, MAPK11, MEK2, and NTRK1) interacting with trVLP RNA. This study was based on trVLP and could not replace live ebolavirus entirely; in particular, the interaction between trVLP RNA and host proteins cannot be assumed to be identical in live virus. However, the results provide valuable information for further studies and deepen our understanding of essential host factors involved in the EBOV life cycle
Mapping the distribution of Anthrax in Mainland China, 2005-2013
Anthrax in China was characterized by significant seasonality and spatial clustering. The spatial distribution of human anthrax was largely driven by livestock husbandry, human density, land cover, elevation, topsoil features and climate. Enhanced surveillance and intervention for livestock and human anthrax in the high-risk regions, particularly on the Qinghai-Tibetan Plateau, is the key to the prevention of human infections
A novel 7-chemokine-genes predictive signature for prognosis and therapeutic response in renal clear cell carcinoma
Background: Renal clear cell carcinoma (ccRCC) is one of the most prevailing type of malignancies, which is affected by chemokines. Chemokines can form a local network to regulate the movement of immune cells and are essential for tumor proliferation and metastasis as well as for the interaction between tumor cells and mesenchymal cells. Establishing a chemokine genes signature to assess prognosis and therapy responsiveness in ccRCC is the goal of this effort.Methods: mRNA sequencing data and clinicopathological data on 526 individuals with ccRCC were gathered from the The Cancer Genome Atlas database for this investigation (263 training group samples and 263 validation group samples). Utilizing the LASSO algorithm in conjunction with univariate Cox analysis, the gene signature was constructed. The Gene Expression Omnibus (GEO) database provided the single cell RNA sequencing (scRNA-seq) data, and the R package âSeuratâ was applied to analyze the scRNA-seq data. In addition, the enrichment scores of 28 immune cells in the tumor microenvironment (TME) were calculated using the âssGSEAâ algorithm. In order to develop possible medications for patients with high-risk ccRCC, the âpRRopheticâ package is employed.Results: High-risk patients had lower overall survival in this model for predicting prognosis, which was supported by the validation cohort. In both cohorts, it served as an independent prognostic factor. Annotation of the predicted signatureâs biological function revealed that it was correlated with immune-related pathways, and the riskscore was positively correlated with immune cell infiltration and several immune checkpoints (ICs), including CD47, PDCD1, TIGIT, and LAG-3, while it was negatively correlated with TNFRSF14. The CXCL2, CXCL12, and CX3CL1 genes of this signature were shown to be significantly expressed in monocytes and cancer cells, according to scRNA-seq analysis. Furthermore, the high expression of CD47 in cancer cells suggested us that this could be a promising immune checkpoint. For patients who had high riskscore, we predicted 12 potential medications.Conclusion: Overall, our findings show that a putative 7-chemokine-gene signature might predict a patientâs prognosis for ccRCC and reflect the diseaseâs complicated immunological environment. Additionally, it offers suggestions on how to treat ccRCC using precision treatment and focused risk assessment
Inhibition of Renin-Angiotensin System Reverses Endothelial Dysfunction and Oxidative Stress in Estrogen Deficient Rats
BACKGROUND: Estrogen deficiency increases the cardiovascular risks in postmenopausal women. Inhibition of the renin-angiotensin system (RAS) and associated oxidative stress confers a cardiovascular protection, but the role of RAS in estrogen deficiency-related vascular dysfunction is unclear. The present study investigates whether the up-regulation of RAS and associated oxidative stress contributes to the development of endothelial dysfunction during estrogen deficiency in ovariectomized (OVX) rats. METHODOLOGY/PRINCIPAL FINDINGS: Adult female rats were ovariectomized with and without chronic treatment with valsartan and enalapril. Isometric force measurement was performed in isolated aortae. The expression of RAS components was determined by immunohistochemistry and Western blotting method while ROS accumulation in the vascular wall was evaluated by dihydroethidium fluorescence. Ovariectomy increased the expression of angiotensin-converting enzyme (ACE), angiotensin II type 1 receptor (AT(1)R), NAD(P)H oxidase, and nitrotyrosine in the rat aorta. An over-production of angiotensin II and ROS was accompanied by decreased phosphorylation of eNOS at Ser(1177) in OVX rat aortae. These pathophysiological changes were closely coupled with increased oxidative stress and decreased nitric oxide bioavailability, culminating in markedly impaired endothelium-dependent relaxations. Furthermore, endothelial dysfunction and increased oxidative stress in aortae of OVX rats were inhibited or reversed by chronic RAS inhibition with enalapril or valsartan. CONCLUSIONS/SIGNIFICANCE: The novel findings highlight a significant therapeutic benefit of RAS blockade in the treatment of endothelial dysfunction-related vascular complications in postmenopausal states
- âŚ