4,384 research outputs found

    Open Logo Detection Challenge

    Full text link
    Existing logo detection benchmarks consider artificial deployment scenarios by assuming that large training data with fine-grained bounding box annotations for each class are available for model training. Such assumptions are often invalid in realistic logo detection scenarios where new logo classes come progressively and require to be detected with little or none budget for exhaustively labelling fine-grained training data for every new class. Existing benchmarks are thus unable to evaluate the true performance of a logo detection method in realistic and open deployments. In this work, we introduce a more realistic and challenging logo detection setting, called Open Logo Detection. Specifically, this new setting assumes fine-grained labelling only on a small proportion of logo classes whilst the remaining classes have no labelled training data to simulate the open deployment. We further create an open logo detection benchmark, called OpenLogo,to promote the investigation of this new challenge. OpenLogo contains 27,083 images from 352 logo classes, built by aggregating/refining 7 existing datasets and establishing an open logo detection evaluation protocol. To address this challenge, we propose a Context Adversarial Learning (CAL) approach to synthesising training data with coherent logo instance appearance against diverse background context for enabling more effective optimisation of contemporary deep learning detection models. Experiments show the performance advantage of CAL over existing state-of-the-art alternative methods on the more realistic and challenging OpenLogo benchmark.Comment: Accepted by BMVC 2018. The QMUL-OpenLogo benchmark is publicly available at: qmul-openlogo.github.i

    A Robust Local Binary Similarity Pattern for Foreground Object Detection

    Full text link
    Accurate and fast extraction of the foreground object is one of the most significant issues to be solved due to its important meaning for object tracking and recognition in video surveillance. Although many foreground object detection methods have been proposed in the recent past, it is still regarded as a tough problem due to illumination variations and dynamic backgrounds challenges. In this paper, we propose a robust foreground object detection method with two aspects of contributions. First, we propose a robust texture operator named Robust Local Binary Similarity Pattern (RLBSP), which shows strong robustness to illumination variations and dynamic backgrounds. Second, a combination of color and texture features are used to characterize pixel representations, which compensate each other to make full use of their own advantages. Comprehensive experiments evaluated on the CDnet 2012 dataset demonstrate that the proposed method performs favorably against state-of-the-art methods.Comment: 2 page

    Incorporating External Knowledge to Answer Open-Domain Visual Questions with Dynamic Memory Networks

    Full text link
    Visual Question Answering (VQA) has attracted much attention since it offers insight into the relationships between the multi-modal analysis of images and natural language. Most of the current algorithms are incapable of answering open-domain questions that require to perform reasoning beyond the image contents. To address this issue, we propose a novel framework which endows the model capabilities in answering more complex questions by leveraging massive external knowledge with dynamic memory networks. Specifically, the questions along with the corresponding images trigger a process to retrieve the relevant information in external knowledge bases, which are embedded into a continuous vector space by preserving the entity-relation structures. Afterwards, we employ dynamic memory networks to attend to the large body of facts in the knowledge graph and images, and then perform reasoning over these facts to generate corresponding answers. Extensive experiments demonstrate that our model not only achieves the state-of-the-art performance in the visual question answering task, but can also answer open-domain questions effectively by leveraging the external knowledge

    Boosting Generative Models by Leveraging Cascaded Meta-Models

    Full text link
    Deep generative models are effective methods of modeling data. However, it is not easy for a single generative model to faithfully capture the distributions of complex data such as images. In this paper, we propose an approach for boosting generative models, which cascades meta-models together to produce a stronger model. Any hidden variable meta-model (e.g., RBM and VAE) which supports likelihood evaluation can be leveraged. We derive a decomposable variational lower bound of the boosted model, which allows each meta-model to be trained separately and greedily. Besides, our framework can be extended to semi-supervised boosting, where the boosted model learns a joint distribution of data and labels. Finally, we combine our boosting framework with the multiplicative boosting framework, which further improves the learning power of generative models

    Scalable Deep Learning Logo Detection

    Full text link
    Existing logo detection methods usually consider a small number of logo classes and limited images per class with a strong assumption of requiring tedious object bounding box annotations, therefore not scalable to real-world dynamic applications. In this work, we tackle these challenges by exploring the webly data learning principle without the need for exhaustive manual labelling. Specifically, we propose a novel incremental learning approach, called Scalable Logo Self-co-Learning (SL^2), capable of automatically self-discovering informative training images from noisy web data for progressively improving model capability in a cross-model co-learning manner. Moreover, we introduce a very large (2,190,757 images of 194 logo classes) logo dataset "WebLogo-2M" by an automatic web data collection and processing method. Extensive comparative evaluations demonstrate the superiority of the proposed SL^2 method over the state-of-the-art strongly and weakly supervised detection models and contemporary webly data learning approaches

    Towards Interpretable Deep Neural Networks by Leveraging Adversarial Examples

    Full text link
    Deep neural networks (DNNs) have demonstrated impressive performance on a wide array of tasks, but they are usually considered opaque since internal structure and learned parameters are not interpretable. In this paper, we re-examine the internal representations of DNNs using adversarial images, which are generated by an ensemble-optimization algorithm. We find that: (1) the neurons in DNNs do not truly detect semantic objects/parts, but respond to objects/parts only as recurrent discriminative patches; (2) deep visual representations are not robust distributed codes of visual concepts because the representations of adversarial images are largely not consistent with those of real images, although they have similar visual appearance, both of which are different from previous findings. To further improve the interpretability of DNNs, we propose an adversarial training scheme with a consistent loss such that the neurons are endowed with human-interpretable concepts. The induced interpretable representations enable us to trace eventual outcomes back to influential neurons. Therefore, human users can know how the models make predictions, as well as when and why they make errors

    Towards Interpretable Deep Neural Networks by Leveraging Adversarial Examples

    Full text link
    Sometimes it is not enough for a DNN to produce an outcome. For example, in applications such as healthcare, users need to understand the rationale of the decisions. Therefore, it is imperative to develop algorithms to learn models with good interpretability (Doshi-Velez 2017). An important factor that leads to the lack of interpretability of DNNs is the ambiguity of neurons, where a neuron may fire for various unrelated concepts. This work aims to increase the interpretability of DNNs on the whole image space by reducing the ambiguity of neurons. In this paper, we make the following contributions: 1) We propose a metric to evaluate the consistency level of neurons in a network quantitatively. 2) We find that the learned features of neurons are ambiguous by leveraging adversarial examples. 3) We propose to improve the consistency of neurons on adversarial example subset by an adversarial training algorithm with a consistent loss.Comment: In AAAI-19 Workshop on Network Interpretability for Deep Learnin

    Evading Defenses to Transferable Adversarial Examples by Translation-Invariant Attacks

    Full text link
    Deep neural networks are vulnerable to adversarial examples, which can mislead classifiers by adding imperceptible perturbations. An intriguing property of adversarial examples is their good transferability, making black-box attacks feasible in real-world applications. Due to the threat of adversarial attacks, many methods have been proposed to improve the robustness. Several state-of-the-art defenses are shown to be robust against transferable adversarial examples. In this paper, we propose a translation-invariant attack method to generate more transferable adversarial examples against the defense models. By optimizing a perturbation over an ensemble of translated images, the generated adversarial example is less sensitive to the white-box model being attacked and has better transferability. To improve the efficiency of attacks, we further show that our method can be implemented by convolving the gradient at the untranslated image with a pre-defined kernel. Our method is generally applicable to any gradient-based attack method. Extensive experiments on the ImageNet dataset validate the effectiveness of the proposed method. Our best attack fools eight state-of-the-art defenses at an 82% success rate on average based only on the transferability, demonstrating the insecurity of the current defense techniques.Comment: CVPR 2019 (Oral

    Improving Interpretability of Deep Neural Networks with Semantic Information

    Full text link
    Interpretability of deep neural networks (DNNs) is essential since it enables users to understand the overall strengths and weaknesses of the models, conveys an understanding of how the models will behave in the future, and how to diagnose and correct potential problems. However, it is challenging to reason about what a DNN actually does due to its opaque or black-box nature. To address this issue, we propose a novel technique to improve the interpretability of DNNs by leveraging the rich semantic information embedded in human descriptions. By concentrating on the video captioning task, we first extract a set of semantically meaningful topics from the human descriptions that cover a wide range of visual concepts, and integrate them into the model with an interpretive loss. We then propose a prediction difference maximization algorithm to interpret the learned features of each neuron. Experimental results demonstrate its effectiveness in video captioning using the interpretable features, which can also be transferred to video action recognition. By clearly understanding the learned features, users can easily revise false predictions via a human-in-the-loop procedure.Comment: To appear in CVPR 201

    Joint Image-Text News Topic Detection and Tracking with And-Or Graph Representation

    Full text link
    In this paper, we aim to develop a method for automatically detecting and tracking topics in broadcast news. We present a hierarchical And-Or graph (AOG) to jointly represent the latent structure of both texts and visuals. The AOG embeds a context sensitive grammar that can describe the hierarchical composition of news topics by semantic elements about people involved, related places and what happened, and model contextual relationships between elements in the hierarchy. We detect news topics through a cluster sampling process which groups stories about closely related events. Swendsen-Wang Cuts (SWC), an effective cluster sampling algorithm, is adopted for traversing the solution space and obtaining optimal clustering solutions by maximizing a Bayesian posterior probability. Topics are tracked to deal with the continuously updated news streams. We generate topic trajectories to show how topics emerge, evolve and disappear over time. The experimental results show that our method can explicitly describe the textual and visual data in news videos and produce meaningful topic trajectories. Our method achieves superior performance compared to state-of-the-art methods on both a public dataset Reuters-21578 and a self-collected dataset named UCLA Broadcast News Dataset
    • …
    corecore