2,223 research outputs found
Astrophysics and cosmology with a deci-hertz gravitational-wave detector: TianGO
We present the astrophysical science case for a space-based, deci-Hz gravitational-wave (GW) detector. We particularly highlight an ability in inferring a source's sky location, both when combined with a network of ground-based detectors to form a long triangulation baseline, and by itself for the early warning of merger events. Such an accurate location measurement is the key for using GW signals as standard sirens for constraining the Hubble constant. This kind of detector also opens up the possibility of testing type Ia supernovae progenitor hypotheses by constraining the merger rates of white dwarf binaries with both super- and sub-Chandrasekhar masses separately. We will discuss other scientific outcomes that can be delivered, including the precise determination of black hole spins, the constraint of structure formation in the early Universe, and the search for intermediate-mass black holes
Enhancement of quantum correlations for the system of cavity QED by applying bang-bang pulses
We propose a scheme of increasing quantum correlations for the cavity quantum
electrodynamics system consisting of two noninteracting two-level atoms each
locally interacting with its own quantized field mode by bang-bang pulses. We
investigate the influence of the bang-bang pulses on the dynamics of quantum
discord, entanglement, quantum mutual information and classical correlation
between the two atoms. It is shown that the amount of quantum discord and
entanglement of the two atoms can be improved by applying the bang-bang pulses.Comment: 6 pages, 5 figure
Phase-Remapping Attack in Practical Quantum Key Distribution Systems
Quantum key distribution (QKD) can be used to generate secret keys between
two distant parties. Even though QKD has been proven unconditionally secure
against eavesdroppers with unlimited computation power, practical
implementations of QKD may contain loopholes that may lead to the generated
secret keys being compromised. In this paper, we propose a phase-remapping
attack targeting two practical bidirectional QKD systems (the "plug & play"
system and the Sagnac system). We showed that if the users of the systems are
unaware of our attack, the final key shared between them can be compromised in
some situations. Specifically, we showed that, in the case of the
Bennett-Brassard 1984 (BB84) protocol with ideal single-photon sources, when
the quantum bit error rate (QBER) is between 14.6% and 20%, our attack renders
the final key insecure, whereas the same range of QBER values has been proved
secure if the two users are unaware of our attack; also, we demonstrated three
situations with realistic devices where positive key rates are obtained without
the consideration of Trojan horse attacks but in fact no key can be distilled.
We remark that our attack is feasible with only current technology. Therefore,
it is very important to be aware of our attack in order to ensure absolute
security. In finding our attack, we minimize the QBER over individual
measurements described by a general POVM, which has some similarity with the
standard quantum state discrimination problem.Comment: 13 pages, 8 figure
Astrophysics and cosmology with a decihertz gravitational-wave detector: TianGO
We present the astrophysical science case for a space-based, decihertz gravitational-wave (GW) detector. We particularly highlight an ability to infer a source’s sky location, both when combined with a network of ground-based detectors to form a long triangulation baseline, and by itself for the early warning of merger events. Such an accurate location measurement is the key for using GW signals as standard sirens for constraining the Hubble constant. This kind of detector also opens up the possibility to test type Ia supernovae progenitor hypotheses by constraining the merger rates of white dwarf binaries with both super- and sub-Chandrasekhar masses separately. We will discuss other scientific outcomes that can be delivered, including the constraint of structure formation in the early Universe, the search for intermediate-mass black holes, the precise determination of black hole spins, the probe of binary systems’ orbital eccentricity evolution, and the detection of tertiary masses around merging binaries
Astrophysics and cosmology with a deci-hertz gravitational-wave detector: TianGO
We present the astrophysical science case for a space-based, deci-Hz gravitational-wave (GW) detector. We particularly highlight an ability in inferring a source's sky location, both when combined with a network of ground-based detectors to form a long triangulation baseline, and by itself for the early warning of merger events. Such an accurate location measurement is the key for using GW signals as standard sirens for constraining the Hubble constant. This kind of detector also opens up the possibility of testing type Ia supernovae progenitor hypotheses by constraining the merger rates of white dwarf binaries with both super- and sub-Chandrasekhar masses separately. We will discuss other scientific outcomes that can be delivered, including the precise determination of black hole spins, the constraint of structure formation in the early Universe, and the search for intermediate-mass black holes
- …