39 research outputs found

    SPATIAL-SPECTRAL FUZZY K-MEANS CLUSTERING FOR REMOTE SENSING IMAGE SEGMENTATION

    Get PDF
    Spectral clustering is a clustering method based on algebraic graph theory. The clustering effect by using spectral method depends heavily on the description of similarity between instances of the datasets. Althought, spectral clustering has been significant interest in recent times, but the raw spectral clustering is often based on Euclidean distance, but it is impossible to accurately reflect the complexity of the data. Despite having a well-defined mathematical framework, good performance and simplicity, it suffers from several drawbacks, such as it is unable to determine a reasonable cluster number, sensitive to initial condition and not robust to outliers. In this paper, we present a new approach named spatial-spectral fuzzy clustering which combines spectral clustering and fuzzy clustering with spatial information into a unified framework to solve these problems, the paper consists of three main steps: Step 1, calculate the spatial information value of the pixels, step 2 applies the spectral clustering algorithm to change the data space from the color space to the new space and step 3 clusters the data in new data space by fuzzy clustering algorithm. Experimental results on the remote sensing image were evaluated based on a number of indicators, such as IQI, MSE, DI and CSI, show that it can improve the clustering accuracy and avoid falling into local optimum.

    Fabrication of silver-nanoparticles-embedded polymer masterbatchs with excellent antibacterial performance

    Get PDF
    In the present work, a versatile and effective synthesis method of the silver-nanoparticles-embedded polyethylene (PE)-based polymer masterbatchs was demonstrated. Antibacterial investigations revealed that the nano-silver masterbatchs consisting of oleate capped silver nanoparticles dispersed in PE polymer matrix exhibited excellent antibacterial performance against Gram-negative Escherichia Coli (E.coli) and Staphylococcus aureus (S. aureus) bacteria.  A complete inhibition in bacteria growth was found at a silver nanoparticles concentration as low as 600 ppm. The origin of bactericidal effect and interaction mechanism of the stabilized silver nanoparticles with the Gram-negative E. coli and Gram-positive S. aureus bacteria can be understood in the light of electron microscopic observation. These advances make the synthesized nano-silver masterbatchs ideal for mass production of effectively antibacterial green products in medical, biological and industrial sectors. The type of polymer resin and silver concentration can be adjusted depending on the application area

    LIGNANS FROM LEAVES OF AMESIODENDRON CHINENSE AND THEIR CYTOTOXIC ACTIVITY

    Get PDF
    ABSTRACTFrom leaves of Amesiodendron chinense (Mer.) Hu four lignans (+)-aptosimon (1), (+)-isolariciresinol (2), (-)-cleomiscosin A (3), and (-)-cleomiscosin C (3) were isolated. Their structures were determined by spectroscopic analysis including MS, 1D and 2D NMR as well as by comparison with reported data in literature. All compounds were evaluated for cytotoxic activities against five human cancer cell lines, KB, SK-LU-1, MCF-7, HepG-2, and SW-480. They showed weak cytotoxic activity on five tested human cancer cell lines with IC50 values ranging from 32.61 to 95.18 µg/ml

    Study on the effect of carbon black, carbon nanotube on the properties of rubber blend acrylonitrile butadiene rubber (NBR)/polyvinyl chloride (PVC)

    Get PDF
    The effects of carbon nanotube (CNT) in combination with carbon black (CB) on the properties of acrylonitrile butadiene rubber (NBR)/polyvinyl chloride (PVC) (70/30) were investigated. The results reveal that the maximal tensile strength of the rubber blend was obtained by the fillers ratio of CB:CNT = 39:1. At this filler ratio, the thermal stability and heat conductivity of the rubber blend were also significantly improved. The analysis of FE-SEM images and DMA diagram indicate that the dispersion of filler as well as the interaction between fillers and rubber matrix was improved by the incorporation of CNT. Keywords. NBR/PVC blends, carbon nanotube (CNT), carbon black (CB), nanocomposites

    A novel diagnostic model for tuberculous meningitis using Bayesian latent class analysis

    Get PDF
    Background Diagnosis of tuberculous meningitis (TBM) is hampered by the lack of a gold standard. Current microbiological tests lack sensitivity and clinical diagnostic approaches are subjective. We therefore built a diagnostic model that can be used before microbiological test results are known. Methods We included 659 individuals aged ≥ 16 years with suspected brain infections from a prospective observational study conducted in Vietnam. We fitted a logistic regression diagnostic model for TBM status, with unknown values estimated via a latent class model on three mycobacterial tests: Ziehl–Neelsen smear, Mycobacterial culture, and GeneXpert. We additionally re-evaluated mycobacterial test performance, estimated individual mycobacillary burden, and quantified the reduction in TBM risk after confirmatory tests were negative. We also fitted a simplified model and developed a scoring table for early screening. All models were compared and validated internally. Results Participants with HIV, miliary TB, long symptom duration, and high cerebrospinal fluid (CSF) lymphocyte count were more likely to have TBM. HIV and higher CSF protein were associated with higher mycobacillary burden. In the simplified model, HIV infection, clinical symptoms with long duration, and clinical or radiological evidence of extra-neural TB were associated with TBM At the cutpoints based on Youden’s Index, the sensitivity and specificity in diagnosing TBM for our full and simplified models were 86.0% and 79.0%, and 88.0% and 75.0% respectively. Conclusion Our diagnostic model shows reliable performance and can be developed as a decision assistant for clinicians to detect patients at high risk of TBM. Summary Diagnosis of tuberculous meningitis is hampered by the lack of gold standard. We developed a diagnostic model using latent class analysis, combining confirmatory test results and risk factors. Models were accurate, well-calibrated, and can support both clinical practice and research

    The immunogenicity of plant-based COE-GCN4pII protein in pigs against the highly virulent porcine epidemic diarrhea virus strain from genotype 2

    Get PDF
    Porcine epidemic diarrhea virus (PEDV) is a serious infectious causative agent in swine, especially in neonatal piglets. PEDV genotype 2 (G2) strains, particularly G2a, were the primary causes of porcine epidemic diarrhea (PED) outbreaks in Vietnam. Here, we produced a plant-based CO-26K-equivalent epitope (COE) variant from a Vietnamese highly virulent PEDV strain belonging to genotype 2a (COE/G2a) and evaluated the protective efficacy of COE/G2a-GCN4pII protein (COE/G2a-pII) in piglets against the highly virulent PEDV G2a strain following passive immunity. The 5-day-old piglets had high levels of PEDV-specific IgG antibodies, COE-IgA specific antibodies, neutralizing antibodies, and IFN-γ responses. After virulent challenge experiments, all of these piglets survived and had normal clinical symptoms, no watery diarrhea in feces, and an increase in their body weight, while all of the negative control piglets died. These results suggest that the COE/G2a-pII protein produced in plants can be developed as a promising vaccine candidate to protect piglets against PEDV G2a infection in Vietnam

    A novel diagnostic model for tuberculous meningitis using Bayesian latent class analysis.

    Get PDF
    BACKGROUND: Diagnosis of tuberculous meningitis (TBM) is hampered by the lack of a gold standard. Current microbiological tests lack sensitivity and clinical diagnostic approaches are subjective. We therefore built a diagnostic model that can be used before microbiological test results are known. METHODS: We included 659 individuals aged [Formula: see text] years with suspected brain infections from a prospective observational study conducted in Vietnam. We fitted a logistic regression diagnostic model for TBM status, with unknown values estimated via a latent class model on three mycobacterial tests: Ziehl-Neelsen smear, Mycobacterial culture, and GeneXpert. We additionally re-evaluated mycobacterial test performance, estimated individual mycobacillary burden, and quantified the reduction in TBM risk after confirmatory tests were negative. We also fitted a simplified model and developed a scoring table for early screening. All models were compared and validated internally. RESULTS: Participants with HIV, miliary TB, long symptom duration, and high cerebrospinal fluid (CSF) lymphocyte count were more likely to have TBM. HIV and higher CSF protein were associated with higher mycobacillary burden. In the simplified model, HIV infection, clinical symptoms with long duration, and clinical or radiological evidence of extra-neural TB were associated with TBM At the cutpoints based on Youden's Index, the sensitivity and specificity in diagnosing TBM for our full and simplified models were 86.0% and 79.0%, and 88.0% and 75.0% respectively. CONCLUSION: Our diagnostic model shows reliable performance and can be developed as a decision assistant for clinicians to detect patients at high risk of TBM. Diagnosis of tuberculous meningitis is hampered by the lack of gold standard. We developed a diagnostic model using latent class analysis, combining confirmatory test results and risk factors. Models were accurate, well-calibrated, and can support both clinical practice and research
    corecore