119 research outputs found

    The role of insulin-like growth factors signaling in merlin-deficient human schwannomas.

    Get PDF
    Loss of the tumor suppressor merlin causes development of the tumors of the nervous system, such as schwannomas, meningiomas, and ependymomas occurring spontaneously or as part of a hereditary disease Neurofibromatosis Type 2 (NF2). Current therapies, (radio) surgery, are not always effective. Therefore, there is a need for drug treatments for these tumors. Schwannomas are the most frequent of merlin-deficient tumors and are hallmark for NF2. Using our in vitro human schwannoma model, we demonstrated that merlin-deficiency leads to increased proliferation, cell-matrix adhesion, and survival. Increased proliferation due to strong activation of extracellular-signal-regulated kinase 1/2 (ERK1/2) is caused by overexpression/activation of platelet-derived growth factor receptor-β (PDGFR-β) and ErbB2/3 which we successfully blocked with AZD6244, sorafenib, or lapatinib. Schwannoma basal proliferation is, however, only partly dependent on PDGFR-β and is completely independent of ErbB2/3. Moreover, the mechanisms underlying pathological cell-matrix adhesion and survival of schwannoma cells are still not fully understood. Here, we demonstrate that insulin-like growth factor-I receptor (IGF-IR) is strongly overexpressed and activated in human primary schwannoma cells. IGF-I and -II are overexpressed and released from schwannoma cells. We show that ERK1/2 is relevant for IGF-I-mediated increase in proliferation and cell-matrix adhesion, c-Jun N-terminal kinases for increased proliferation and AKT for survival. We demonstrate new mechanisms involved in increased basal proliferation, cell-matrix adhesion, and survival of schwannoma cells. We identified therapeutic targets IGF-IR and downstream PI3K for treatment of schwannoma and other merlin-deficient tumors and show usefulness of small molecule inhibitors in our model. PI3K is relevant for both IGF-IR and previously described PDGFR-β signaling in schwannoma

    Changes in iron-regulatory gene expression occur in human cell culture models of Parkinson's disease.

    Get PDF
    BACKGROUND: Neuronal iron accumulation is thought to be relevant to the pathogenesis of Parkinson's disease (PD), although the mechanism remains elusive. We hypothesized that neuronal iron uptake may be stimulated by functional mitochondrial iron deficiency. OBJECTIVE: To determine firstly whether the mitochondrial toxin, 1-methyl-4-phenylpyridinium iodide (MPP(+)), results in upregulation of iron-import proteins and transporters of iron into the mitochondria, and secondly whether similar changes in expression are induced by toxins with different mechanisms of action. METHODS: We used quantitative PCR and Western blotting to investigate expression of the iron importers, divalent metal transporter, transferrin receptor 1 and 2 (TfR1 and TfR2) and mitoferrin-2 and the iron exporter ferroportin in differentiated SH-SY5Y cells exposed to three different toxins relevant to PD, MPP(+), paraquat (a free radical generator) and lactacystin (an inhibitor of the ubiquitin-proteasome system (UPS)). RESULTS: MPP(+) resulted in increased mRNA and protein levels of genes involved in cellular iron import and transport into the mitochondria. Similar changes occurred following exposure to paraquat, another inducer of oxidative stress. Lactacystin also resulted in increased TfR1 mRNA levels, although the other changes were not found. CONCLUSION: Our results support the hypothesis of a functional mitochondrial iron deficit driving neuronal iron uptake but also suggest that differences exist in neuronal iron handling induced by different toxins

    Constitutive activation of the EGFR-STAT1 axis increases proliferation of meningioma tumor cells.

    Get PDF
    Background: Meningiomas are the most frequent primary brain tumors of the central nervous system. The standard of treatment is surgery and radiotherapy, but effective pharmacological options are not available yet. The well-characterized genetic background stratifies these tumors in several subgroups, thus increasing diversification. We identified epidermal growth factor receptor-signal transducer and activator of transcription 1 (EGFR-STAT1) overexpression and activation as a common identifier of these tumors. Methods: We analyzed STAT1 overexpression and phosphorylation in 131 meningiomas of different grades and locations by utilizing several techniques, including Western blots, qPCR, and immunocytochemistry. We also silenced and overexpressed wild-type and mutant forms of the gene to assess its biological function and its network. Results were further validated by drug testing. Results: STAT1 was found widely overexpressed in meningioma but not in the corresponding healthy controls. The protein showed constitutive phosphorylation not dependent on the JAK-STAT pathway. STAT1 knockdown resulted in a significant reduction of cellular proliferation and deactivation of AKT and ERK1/2. STAT1 is known to be activated by EGFR, so we investigated the tyrosine kinase and found that EGFR was also constitutively phosphorylated in meningioma and was responsible for the aberrant phosphorylation of STAT1. The pharmaceutical inhibition of EGFR caused a significant reduction in cellular proliferation and of overall levels of cyclin D1, pAKT, and pERK1/2. Conclusions: STAT1-EGFR-dependent constitutive phosphorylation is responsible for a positive feedback loop that causes its own overexpression and consequently an increased proliferation of the tumor cells. These findings provide the rationale for further studies aiming to identify effective therapeutic options in meningioma

    Loss of SOX10 function contributes to the phenotype of human Merlin-null schwannoma cells.

    Get PDF
    Loss of the Merlin tumour suppressor causes abnormal de-differentiation and proliferation of Schwann cells and formation of schwannoma tumours in patients with neurofibromatosis type 2. Within the mature peripheral nerve the normal development, differentiation and maintenance of myelinating and non-myelinating Schwann cells is regulated by a network of transcription factors that include SOX10, OCT6 (now known as POU3F1), NFATC4 and KROX20 (also known as Egr2). We have examined for the first time how their regulation of Schwann cell development is disrupted in primary human schwannoma cells. We find that induction of both KROX20 and OCT6 is impaired, whereas enforced expression of KROX20 drives both myelin gene expression and cell cycle arrest in Merlin-null cells. Importantly, we show that human schwannoma cells have reduced expression of SOX10 protein and messenger RNA. Analysis of mouse SOX10-null Schwann cells shows they display many of the characteristics of human schwannoma cells, including increased expression of platelet derived growth factor receptor beta (PDGFRB) messenger RNA and protein, enhanced proliferation, increased focal adhesions and schwannoma-like morphology. Correspondingly, reintroduction of SOX10 into human Merlin-null cells restores the ability of these cells to induce KROX20 and myelin protein zero (MPZ), localizes NFATC4 to the nucleus, reduces cell proliferation and suppresses PDGFRB expression. Thus, we propose that loss of the SOX10 protein, which is vital for normal Schwann cell development, is also key to the pathology of Merlin-null schwannoma tumours
    corecore