2 research outputs found

    In depth compositional analysis of ceramic (Bi2O3)0.75(Er2O3)0.25 by AES and XPS

    Get PDF
    The chemical composition of dense ceramics of erbia-stabilized δ-Bi2O3 was analyzed by Auger electron spectroscopy (AES) depth profiling using Ar+ ion sputtering. The relative sensitivity factors (rsf) and sputter rates of bismuth and erbium in this material have been determined by electron probe microanalysis (EPMA) and chemical analysis. These results, supplemented by data from angle resolved X-ray photoelectron spectroscopy (ARXPS), shows a bismuth enrichment at the surface. Evidence has been found for reduction of the bismuth-oxide at the outermost part of the surface layer

    Distribution and thickness of the surface contaminations on STM tungsten tips, studied by AES/SEM and ARXPS

    Get PDF
    The combination of Auger electron spectroscopy (AES), scanning electron microscopy (SEM) and angle resolved X-ray photoelectron spectroscopy (ARXPS) has been applied to the analysis of the distribution of elements at the surface region of electrochemically etched tungsten tips and the determination of the thickness of a layer with oxygen and carbon contamination. Auger line profiling revealed a homogeneous distribution of oxygen and significant enrichment of carbon on the W tip between 0 and 1.5 μm from the top. The thickness of the contamination layer on various W materials, electrochemically etched, was found to be 1.35±0.15 nm as measured using ARXPS, and was estimated to be about 1–3 nm as measured by AES
    corecore