6 research outputs found

    Chargeâ Transport Properties of F6TNAPâ Based Chargeâ Transfer Cocrystals

    Full text link
    The crystal structures of the chargeâ transfer (CT) cocrystals formed by the Ï â electron acceptor 1,3,4,5,7,8â hexafluoroâ 11,11,12,12â tetracyanonaphthoâ 2,6â quinodimethane (F6TNAP) with the planar Ï â electronâ donor molecules triphenylene (TP), benzo[b]benzo[4,5]thieno[2,3â d]thiophene (BTBT), benzo[1,2â b:4,5â bâ ²]dithiophene (BDT), pyrene (PY), anthracene (ANT), and carbazole (CBZ) have been determined using singleâ crystal Xâ ray diffraction (SCXRD), along with those of two polymorphs of F6TNAP. All six cocrystals exhibit 1:1 donor/acceptor stoichiometry and adopt mixedâ stacking motifs. Cocrystals based on BTBT and CBZ Ï â electron donor molecules exhibit brickwork packing, while the other four CT cocrystals show herringboneâ type crystal packing. Infrared spectroscopy, molecular geometries determined by SCXRD, and electronic structure calculations indicate that the extent of groundâ state CT in each cocrystal is small. Density functional theory calculations predict large conduction bandwidths and, consequently, low effective masses for electrons for all six CT cocrystals, while the TPâ , BDTâ , and PYâ based cocrystals are also predicted to have large valence bandwidths and low effective masses for holes. Chargeâ carrier mobility values are obtained from spaceâ charge limited current (SCLC) measurements and fieldâ effect transistor measurements, with values exceeding 1 cm2 Vâ 1 s1 being estimated from SCLC measurements for BTBT:F6TNAP and CBZ:F6TNAP cocrystals.Structural, electronic band structure, and electrical properties of a series of chargeâ transfer cocrystals based on F6TNAP and six planar donors are presented. Density functional theory calculations afford large conduction bandwidths and low effective masses for all six cocrystals. A few cocrystals exhibit chargeâ carrier mobilities in excess of 1 cm2 Vâ 1 sâ 1, as estimated from spaceâ charge limited current measurements.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/153248/1/adfm201904858-sup-0001-S1.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/153248/2/adfm201904858.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/153248/3/adfm201904858_am.pd

    Computationally Aided Design of a High-Performance Organic Semiconductor: The Development of a Universal Crystal Engineering Core

    Get PDF
    Herein, we describe the design and synthesis of a suite of molecules based on a benzodithiophene “universal crystal engineering core”. After computationally screening derivatives, a trialkylsilylethyne-based crystal engineering strategy was employed to tailor the crystal packing for use as the active material in an organic field-effect transistor. Electronic structure calculations were undertaken to reveal derivatives that exhibit exceptional potential for high-efficiency hole transport. The promising theoretical properties are reflected in the preliminary device results, with the computationally optimized material showing simple solution processing, enhanced stability, and a maximum hole mobility of 1.6 cm2 V−1 s−1

    Spectroscopic Ellipsometry Studies of n-i-p Hydrogenated Amorphous Silicon Based Photovoltaic Devices

    No full text
    Optimization of thin film photovoltaics (PV) relies on characterizing the optoelectronic and structural properties of each layer and correlating these properties with device performance. Growth evolution diagrams have been used to guide production of materials with good optoelectronic properties in the full hydrogenated amorphous silicon (a-Si:H) PV device configuration. The nucleation and evolution of crystallites forming from the amorphous phase were studied using in situ near-infrared to ultraviolet spectroscopic ellipsometry during growth of films prepared as a function of hydrogen to reactive gas flow ratio R = [H2]/[SiH4]. In conjunction with higher photon energy measurements, the presence and relative absorption strength of silicon-hydrogen infrared modes were measured by infrared extended ellipsometry measurements to gain insight into chemical bonding. Structural and optical models have been developed for the back reflector (BR) structure consisting of sputtered undoped zinc oxide (ZnO) on top of silver (Ag) coated glass substrates. Characterization of the free-carrier absorption properties in Ag and the ZnO + Ag interface as well as phonon modes in ZnO were also studied by spectroscopic ellipsometry. Measurements ranging from 0.04 to 5 eV were used to extract layer thicknesses, composition, and optical response in the form of complex dielectric function spectra (Îľ = Îľ1 + iÎľ2) for Ag, ZnO, the ZnO + Ag interface, and undoped a-Si:H layer in a substrate n-i-p a-Si:H based PV device structure

    Charge‐Transport Properties of F 6

    No full text
    The crystal structures of the chargeâ transfer (CT) cocrystals formed by the Ï â electron acceptor 1,3,4,5,7,8â hexafluoroâ 11,11,12,12â tetracyanonaphthoâ 2,6â quinodimethane (F6TNAP) with the planar Ï â electronâ donor molecules triphenylene (TP), benzo[b]benzo[4,5]thieno[2,3â d]thiophene (BTBT), benzo[1,2â b:4,5â bâ ²]dithiophene (BDT), pyrene (PY), anthracene (ANT), and carbazole (CBZ) have been determined using singleâ crystal Xâ ray diffraction (SCXRD), along with those of two polymorphs of F6TNAP. All six cocrystals exhibit 1:1 donor/acceptor stoichiometry and adopt mixedâ stacking motifs. Cocrystals based on BTBT and CBZ Ï â electron donor molecules exhibit brickwork packing, while the other four CT cocrystals show herringboneâ type crystal packing. Infrared spectroscopy, molecular geometries determined by SCXRD, and electronic structure calculations indicate that the extent of groundâ state CT in each cocrystal is small. Density functional theory calculations predict large conduction bandwidths and, consequently, low effective masses for electrons for all six CT cocrystals, while the TPâ , BDTâ , and PYâ based cocrystals are also predicted to have large valence bandwidths and low effective masses for holes. Chargeâ carrier mobility values are obtained from spaceâ charge limited current (SCLC) measurements and fieldâ effect transistor measurements, with values exceeding 1 cm2 Vâ 1 s1 being estimated from SCLC measurements for BTBT:F6TNAP and CBZ:F6TNAP cocrystals.Structural, electronic band structure, and electrical properties of a series of chargeâ transfer cocrystals based on F6TNAP and six planar donors are presented. Density functional theory calculations afford large conduction bandwidths and low effective masses for all six cocrystals. A few cocrystals exhibit chargeâ carrier mobilities in excess of 1 cm2 Vâ 1 sâ 1, as estimated from spaceâ charge limited current measurements.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/153248/1/adfm201904858-sup-0001-S1.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/153248/2/adfm201904858.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/153248/3/adfm201904858_am.pd
    corecore