25 research outputs found
Different genetic mechanisms mediate spontaneous versus UVR-induced malignant melanoma
Genetic variation conferring resistance and susceptibility to carcinogen-induced tumorigenesis is frequently studied in mice. We have now turned this idea to melanoma using the collaborative cross (CC), a resource of mouse strains designed to discover genes for complex diseases. We studied melanoma-prone transgenic progeny across seventy CC genetic backgrounds. We mapped a strong quantitative trait locus for rapid onset spontaneous melanoma onset to Prkdc, a gene involved in detection and repair of DNA damage. In contrast, rapid onset UVR-induced melanoma was linked to the ribosomal subunit gene Rrp15. Ribosome biogenesis was upregulated in skin shortly after UVR exposure. Mechanistically, variation in the ‘usual suspects’ by which UVR may exacerbate melanoma, defective DNA repair, melanocyte proliferation, or inflammatory cell infiltration, did not explain melanoma susceptibility or resistance across the CC. Instead, events occurring soon after exposure, such as dysregulation of ribosome function, which alters many aspects of cellular metabolism, may be important
Genome-Wide Copy Number Analysis in Esophageal Adenocarcinoma Using High-Density Single-Nucleotide Polymorphism Arrays
We applied whole-genome single-nucleotide polymorphism arrays to define a comprehensive genetic profile of 23 esophageal adenocarcinoma (EAC) primary tumor biopsies based on loss of heterozygosity (LOH) and DNA copy number changes. Alterations were common, averaging 97 (range, 23-208) per tumor. LOH and gains averaged 33 (range, 3-83) and 31 (range, 11-73) per tumor, respectively. Copy neutral LOH events averaged 27 (range, 7-57) per EAC. We noted 126 homozygous deletions (HD) across the EAC panel (range, 0-11 in individual tumors). Frequent HDs within FHIT (17 of 23), WWOX (8 of 23), and DMD (6 of 23) suggest a role for common fragile sites or genomic instability in EAC etiology. HDs were also noted for known tumor suppressor genes (TSG), including CDKN2A, CDKN2B, SMAD4, and GALR1, and identified PDE4D and MGC48628 as potentially novel TSGs. All tumors showed LOH for most of chromosome 17p, suggesting that TSGs other than TP53 may be targeted. Frequent gains were noted around MYC (13 of 23), BCL9 (12 of 23), CTAGE1 (14 of 23), and ZNF217 (12 of 23). Thus, we have confirmed previous reports indicating frequent changes to FHIT, CDKN2A, TP53, and MYC in EAC and identified additional genes of interest. Meta-analysis of previous genome-wide EAC studies together with the data presented here highlighted consistent regions of gain on 8q, 18q, and 20q and multiple LOH regions on 4q, 5q, 17p, and 18q, suggesting that more than one gene may be targeted on each of these chromosome arms. The focal gains and deletions documented here are a step toward identifying the key genes involved in EAC development
SiDCoN: A Tool to Aid Scoring of DNA Copy Number Changes in SNP Chip Data
The recent application of genome-wide, single nucleotide polymorphism (SNP) microarrays to investigate DNA copy number aberrations in cancer has provided unparalleled sensitivity for identifying genomic changes. In some instances the complexity of these changes makes them difficult to interpret, particularly when tumour samples are contaminated with normal (stromal) tissue. Current automated scoring algorithms require considerable manual data checking and correction, especially when assessing uncultured tumour specimens. To address these limitations we have developed a visual tool to aid in the analysis of DNA copy number data. Simulated DNA Copy Number (SiDCoN) is a spreadsheet-based application designed to simulate the appearance of B-allele and logR plots for all known types of tumour DNA copy number changes, in the presence or absence of stromal contamination. The system allows the user to determine the level of stromal contamination, as well as specify up to 3 different DNA copy number aberrations for up to 5000 data points (representing individual SNPs). This allows users great flexibility to assess simple or complex DNA copy number combinations. We demonstrate how this utility can be used to estimate the level of stromal contamination within tumour samples and its application in deciphering the complex heterogeneous copy number changes we have observed in a series of tumours. We believe this tool will prove useful to others working in the area, both as a training tool, and to aid in the interpretation of complex copy number changes
Keratinocyte sonic hedgehog up-regulation drives the development of giant congenital nevi via paracrine endothelin-1 secretion
Giant congenital nevi are associated with clinical complications such as neurocutaneous melanosis and melanoma. Virtually nothing is known about why some individuals develop these lesions. We previously identified the sonic hedgehog (Shh) pathway regulator Cdon as a candidate nevus modifier gene. Here we validate this by studying Cdon knockout mice, and go on to establishing the mechanism by which Shh exacerbates nevogenesis. Cdon knockout mice develop blue nevi without the need for somatic melanocyte oncogenic mutation. In a mouse model carrying melanocyte NRAS, we found that strain backgrounds that carry genetic variants that cause increased keratinocyte Shh pathway activity, as measured by Gli1 and Gli2 expression, develop giant congenital nevi. Shh components are also active adjacent to human congenital nevi. Mechanistically, this exacerbation of nevogenesis is driven via the release of the melanocyte mitogen endothelin-1 from keratinocytes. We then suppressed nevus development in mice using Shh and endothelin antagonists. Our work suggests an aspect of nevus development whereby keratinocyte cytokines such as endothelin-1 can exacerbate nevogenesis, and provides potential therapeutic approaches for giant congenital nevi. Furthermore, it highlights the notion that germline genetic variation, in addition to somatic melanocyte mutation, can strongly influence the histopathological features of melanocytic nevi
Length Variations in the COII–tRNALys Intergenic Region of Mitochondrial DNA in Indonesian Populations
The prevalence of a 9-base-pair (bp) deletion between the mitochondrial cytochrome oxidase II (MTCOX*2) and lysine tRNA (MTTK) genes (region V) has been used to estimate the genetic relationships among Asian and Pacific populations. Many East Asian and Pacific Island populations have been examined previously, but the mitochondrial DNA (mtDNA) diversity of the intervening Indonesian archipelago has not previously been systematically examined. The 17,500 islands of Indonesia currently contain nearly 213 million people and extensive cultural, linguistic, and, presumably, genetic diversity. This study of 1091 individuals representing 15 ethnic groups is the most extensive mtDNA survey to date of the Indonesian archipelago. Six distinct length polymorphisms in region V were observed within these 15 populations. The 9-bp deletion was found in every population examined at frequencies comparable to those of previously examined East Asian populations and substantially lower than those in most Pacific Island populations. Despite the inclusion of Austronesian-speaking populations and a Papuan-speaking population, there was no statistically significant heterogeneity in the frequency of the 9-bp deletion among the 15 populations (p = 0.09). These data indicate that substantial gene flow occurred among the populations at some time in the past. Our observations of no significant correlations between genetic and geographic distances (r = –0.04, p = 0.53) coupled with the extensive cultural and linguistic differences currently within the archipelago suggest that little gene flow among neighboring populations has occurred recently