30 research outputs found
Synthesis of Poly(di-allylcalix[4]arene) resin as Cationic Heavy Metal
Phenol is one of petrochemical products which is cheap and easy to obtain.
This research was done with the intention of convert phenols to valuable products
which have higher economic value for example phenol transformation to calix[4]arene.
Active site of calixarenes which have important role to the adsorption, extraction, and
complexation are the presence of hydroxyl groups located in a line to form cyclic
structure and the existence of molecule cavity forming like vase or cup shapes. With
regard to calixarenes, it have proved that this compound can be used for heavy metal
cationic adsorption. In the form of polymerization, the cyclic hydroxyl groups and
calix[4]arenes cavity are arranged in a series forming a tunnel like structure. Based on
this phenomenon, this research was carried out to synthesize calix[4]arene polymers
having two allyl groups. Due to the existence of the two allyl groups, cross link
reaction between calix[4]arene was taken place. This makes the molecules immobile
and it can be predicted that the adsorption process for heavy metal cationic will be
higher.
In the first year, the synthesis of poly(di-allylcalix[4]arene) from phenol were
performed in experimental series as follows: (1) Alkylation of phenol using p-tbutylchloride and AlCl3 to p-t-butylphenol, (2) Cyclotetramerization of p-tbutylphenol with NaOH and paraformaldehyde to p-butylcalix[4]arene, (3)
Debutylation of p-butylcalix[4]arene using AlCl3 and phenol to
tetrahydroxycalix[4]arene, (4) Allylation reaction using allylbromide to allyloxydihydroxycalix[4]arene, (5) Claisen rearrangement reaction, (6) Cationic
polymerization to diallylcalix[4]arenes.
The second year, the poly-diallylcalix[4]arenes were applicated as an adsorbent
of heavy metal cations (Pb(II) and Cr(III)). Adsorbent used in adsorption process were
three adsorbent, there are 25,26,27,26-tetrahydroxycalix[4]arene (M), poly-25-27-diallyloxy-26,28- dihidroxy[4]arene (PD) and poly-5,7-diallyl-25,26,27,28-tetrahidoxycalix[4]arene (PCD).
Adsorption was carried out towards Pb(II) and Cr(III) ions in batch system.
Several variables including pH, contact time and initial concentration of metal ions
were determined. The optimum pH of adsorption of metal ions Pb (II) was pH 5.0 for
the three adsorbents, while the adsorption of metal ions Cr (III) at pH 5.5 for adsorbent
M and PCD, and those for adsorbent PD was pH 5.0. In addition, the optimum contact
time of Pb (II) ion adsorption was 180 minutes for the adsorbent M, while those for the
adsorbent PD and PCD were 135 minutes. The optimum contact time of Cr (III) ion
adsorption were 180 minutes for the adsorbent M and PD, while those the adsorbent
PCD was 135 minutes. The adsorption kinetics of Pb(II) and Cr(III) ions using three
adsorbent (M, PD and PCD) followed a pseudo 2
nd
order kinetics model. Furthermore,
The adsorption isotherm of Pb(II) ions using three adsorbent tends to follow the
Langmuir isotherm, whereas the adsorption of Cr (III) using three adsorbent tends to
follow the Freundlich isotherm. The adsorption capacity of Pb(II) metal ions using
M,PD and PCD were 115.03, 102.19 and 125.82 μmole/g, with adsorption energy of
27.69, 28.74 and 28.12 KJ / mole, respectively. Whlie The adsorption capacity of
Cr(III) metal ions using M,PD and PCD were 163.98, 178.57 and 238.59 μmole/g,
with adsorption energy of 25.63, 27.65 and 25.53 KJ / mole, respectively
SINTESIS POLI-5-ALLILKALIKS[4]ARENA DAN TURUNAN ESTER SERTA ASAM KARBOKSILATNYA SEBAGAI ADSORBEN DAN ANTIDOTUM KERACUNAN LOGAM BERAT
Telah dilakukan sintesis senyawa seri poli-5-allilkaliks[4]arena yang meliputi poli-5-
allil-25,26,27,28-tetrahidroksikaliks[4]arena (PK[4]H), poli-5-allilkaliks[4]-arena tetra ester
(PK[4]E) dan poli-5-allilkaliks[4]arena tetra asam asetat (PK[4]A). Apakah senyawa hasil
sintesis dapat digunakan sebagai adsorben baik dalam bidang industri maupun sebagai
antidotum dikaji dalam penelitian ini.
Sintesis seri poli-5-allilkaliks[4]arena ini dilakukan melalui tahapan reaksi: (1) sintesis
p-t-butilkaliks[4]arena, (2) debutilasi, (3) sintesis 25-alliloksi-,26,27,28-
trihidroksikaliks[4]arena (kaliksarena 1), (4) sintesis 5-allil-25,26,27,28-
tetrahidroksikaliks[4]arena (kaliksarena 2), (5) esterifikasi kaliksarena 2 sehingga diperoleh 5-
allilkaliks[4] tetraester (kaliksarena 3), (6) hidrolisis kaliksarena 3 menghasilkan 5-
allilkaliks[4]arena tetra asam asetat (kaliksarena 4), (7) polimerisasi kationik terhadap
kaliksarena 2,3 dan 4. Uji adsorpsi PK[4]H, PK[4]E dan PK[4]A dilakukan menggunakan
metode batch, sedangkan uji aktivitas antidotum dan keamanannya dilakukan secara in vivo.
Sintesis kaliksarena 1, 2, 3 dan 4 menghasilkan produk dengan rendemen 88,36%;
78,33%, 44,33% dan 84,52%. Polimerisasi kaliksarena 2, 3 dan 4 menghasilkan produk PK[4]H,
PK[4]E dan PK[4]A dengan titik leleh berturut-turut 292-295, 298-300 dan 300-303
°C dan
rendemen masing-masing 85, 70 dan 87,18%, serta berat molekul relatif berturut-turut 109.943;
84.510 dan 63.171 mol/g, dengan unit pengulang 273, 104 dan 91. Hasil uji adsorpsi
menunjukkan bahwa pengaruh pH terhadap proses adsorpsi berbeda-beda untuk masing-
masing spesies, tergantung dari jenis adsorben dan spesies logam yang akan diadsorpsi. Kajian
kinetika adsorpsi menunjukkan bahwa adsorpsi ion logam Pb(II), Cd(II) dan Cr(III)
menggunakan ketiga adsorben PK[4]H, PK[4]E dan PK[4]A, mengikuti model kinetika Ho, orde
pseudo 2. Kapasitas maksimum adsorpsi menggunakan ketiga adsorben PK[4]H, PK[4]E dan
PK[4]A mempunyai kapasitas terbesar pada adsorpsi dengan logam Cr(III) yaitu masing-
masing sebesar 208,02; 197,25 dan 228,69 µmol/g, dengan energi adsorpsi berturut-turut
27,57; 27,15 dan 31,07 kJ/mol. Koefisien partisi PK[4]H pada pH 3,5 dan 7,4 berturut-turut
1,62 ± 0,1 dan 1,62 ± 0,07. Berdasarkan hasil uji in vitro penyerapan logam-logam essensial,
maka dapat disimpulkan bahwa penggunaan PK[4]H sebagai antidotum keracunan logam Cd(II) harus disertai dengan pemberian suplemen yang mengandung Fe, Ca dan Zn. Uji
toksisitas akut menunjukkan bahwa bahan uji mempunyai LD50 lebih besar dari 260 mg/kg BB
mencit. Pemberian obat PK[4]H sebagai antidotum dapat menurunkan kandungan Cd dalam
ginjal, hati dan darah. Uji aktivitas antidotum menunjukkan bahwa dosis efektif dari PK[4]H
sebagai antidotum keracunan Cd adalah dosis 2 (0,65 mg/kg BB).
Kata kunci : poli-5-allilkaliks[4]arena; adsorpsi Cd(II), Pb(II) dan Cr(III); antidotum Cd
PEMBUATAN MIKROKAPSUL KITOSAN GEL TERSAMBUNG SILANG ETILEN GLIKOL DIGLISIDIL ETER (Psf-Egde-Cts) SEBAGAI ADSORBEN ZAT WARNA Procion Red Mx 8b ( PREPARATION OF MICROCAPSULE OF CHITOSAN GEL BEADS CROSSLINKED WITH ETHYLENE GLYCOL DIGLYCIDYL ETHER (Psf-Egde-Cts) AS ADSORBENT FOR Procion Red Mx 8b Dye)
Microcapsules of chitosan gel beads crosslinked with Ethylene Glycol Diglycidyl Ether (PSF-EGDE-CTS) were prepared to improve adsorption capacity and mechanical stability of chitosan at acidic condition. These microcapsules were prepared through three step i.e. the formation of gel beads (CTS), crosslinked CTS with EGDE (EGDE-CTS) and microencapsulation of EGDE-CTS with Polysulfone (PSF-EGDE-CTS). Product characterizations were carried out using FTIR and SEM. The adsorptions were carried out by variation of pH and contact time in order to determine the optimum condition of adsorption. The yield of Microcapsules PSF-EGDE-CTS was 94,79 wt %. The optimum condition of Procion Red MX 8B dye adsorption by PSF-EGDE-CTS is at pH 5 and 24 hours of contact time. The adsorption capacity of PSF-EGDE-CTS is 40,69 mg/g.
Keywords : adsorption, chitosan, crosslink, microcapsules, Procion Red MX 8B.
Mikrokapsul kitosan gel tersambung silang etilen glikol diglisidil eter (PSF-EGDE-CTS) telah dibuat untuk meningkatkan kemampuan adsorpsi dan stabilitas kitosan dalam kondisi asam. Mikrokapsul PSF-EGDE-CTS dibuat melalui tiga tahap yaitu pembentukan gel (CTS), proses sambung silang dengan EGDE (EGDE-CTS) dan mikroenkapsulasi dengan PSF (PSF-EGDE-CTS). Karakterisasi hasil sintesis dilakukan dengan spektroskopi FTIR dan SEM. Selanjutnya PSF-EGDE-CTS digunakan untuk uji adsorpsi limbah zat warna Procion Red MX 8B. Adsorpsi zat warna Procion Red MX 8B oleh kitosan termodifikasi dilakukan dengan variasi pH dan waktu kontak untuk mencari kondisi optimum adsorpsi. Mikrokapsul PSF-EGDE-CTS yang diperoleh adalah 94,79% (b/b). Kondisi optimum adsorpsi zat warna Procion Red MX 8B oleh PSF-EGDE-CTS terjadi pada pH 5 dan waktu kontak 24 jam. Daya serap PSF-EGDE-CTS pada uji adsorpsi limbah zat warna Procion Red MX 8B adalah sebesar 40,69 mg/g.
Kata kunci : adsorpsi, kitosan, mikrokapsul, Procion Red MX 8B
Sintesis Kopoli(Eugenol-DVB) Sulfonat dari Eugenol Komponen Utama Minyak Cengkeh (Syzygium aromaticum)
Cationic co-polymerization between eugenol and divinilbenzene (DVB) (2%, 4%, 6%, 8%, 10% and
12%) with BF3O(C2H5)2 as a catalyst at room temperature without media under nitrogen atmosphere has been
investigated. Co-poly (eugenol sulfonate)-DVB has been synthesized by sulfonation of co-poly(eugenol-DVB). In the
sulfonation, concentrated sulfuric acid was used as the reagent and Ag2SO4 as a catalyst. Structure and
characterization of co-poly (eugenol-DVB) and Co-poly(eugenol sulfonate)-DVB were analyzed by Infra Red (IR),
Defferential Thermal Analysis) DTA and UV-Vis. Measurement of the number-average molecular weight (Mn) of
copolymer were used Ostwald capillary viscometer. The yields of co-polymerization of eugenol-DVB were solid
matter and the highest result was found on a copolymer of 10% of DVB. Its melting point was 69.33o
C. The
increasing of mole of DVB increase the number-average molecular weight (Mn) of co-poly (eugenol sulfonate)-DVB.
A copolymer of 12% of DVB gave the highest molecular weight, Mn = 2984 g/mole. Synthesized of co-poly (eugenol
sulfonate)-DVB were solid matter too and the highest result was found on a copolymer of 12% of DVB. Its melting
point was 95.5o
C.
Keywords: Co-polymerization, Sulfonation, Co-poly(eugenol sulfonate)-DV
Sintesis Senyawa Komponen Parfum Etil p-Anisat dari Anetol
Synthesis of ethyl p-anisate from anethole have been done. Ethyl p-anisate is ester coumpound which
can use as perfume component. p-anisic acid was synthesized from anethole (1 mole) which oxidixed by KMnO4 (3
moles) at 40o
C for 2 hours. Esterification with ethanol carried out at 78,5o
C for 6 hours. Identification and
determination structure coumpound of product synthesis used spectroscophic methodes (GC, GC-MS and IR).
Anethole has been isolated from anise oil as 90,3%. p-Anisic acid and ethyl p-anisate as synthesized products got
45% and 79,9% respectively.
Keywords: anethole, p-anisic acid, esterification, ethyl p-anisate
SYNTHESIS OF POLY -5,7 -DIALL YL-25,26,27,28-TETRAHYDROXYCALlX[4]ARENE
ABSTRACT
The synthesis of poly-5,7-diallyl-25,26,27,28-tetrahydroxycalix[4]arenewere performed in experimental series as follows: (1) Cyclotetramerizationof p-t-butylphenol with NaOH and paraformaldehyde to p-butylcalix[4]arene, (2)
Debutylation of p-butylcalix[4]arene using AICI3and phenol to tetrahydroxycalix[4]arene,(3) Allylation reaction using allylbromide to diallyloxy-dihydroxycalix[4]arene,(4) Claisen rearrangement reaction, (5) Cationic polymerization to
diallylcalix[4]arenesA.ll of the synthesizedproductswere analyzedby meansof IR spectrometerand 1H-NMR
spectrometer. The result of 25,27-diallyloxy-26,28-dihydroxycalix[4]arenesynthesis was white crystals having m.p. 205-207 °C in 80.95% yield. The synthesis of 5,7-diallyl-25,26,27,28-tetrahydroxy-calix[4]arenegave light yellow crystals having m.p. 214-216 °C in 78.67% yield. The polymerization gave poly(5,7-diallyl-25,26,27,28-tetrahydroxycalix[
4]arene)having m.p. 338-340 °C, in 60% yield. Its estimated has a relative molecular weight of 18,738
glmol with the number of unit repetition about 37 monomer units.
Keywords: Diallylation, polymerization, Poly-5, 7-diallyl-25, 26, 27,28-tetrahydroxycalix[4]aren
SYNTHESIS OF POLY-5,7-DIALLYL-25,26,27,28-TETRAHYDROXYCALIX[4]ARENE
The synthesis of poly-5,7-diallyl-25,26,27,28-tetrahydroxycalix[4]arene were performed in experimental series
as follows: (1) Cyclotetramerization of p-t-butylphenol with NaOH and paraformaldehyde to p-butylcalix[4]arene, (2)
Debutylation of p-butylcalix[4]arene using AlCl3 and phenol to tetrahydroxycalix[4]arene, (3) Allylation reaction using
allylbromide to diallyloxy-dihydroxycalix[4]arene, (4) Claisen rearrangement reaction, (5) Cationic polymerization to
diallylcalix[4]arenes. All of the synthesized products were analyzed by means of IR spectrometer and 1H-NMR
spectrometer. The result of 25,27-diallyloxy-26,28-dihydroxycalix[4]arene synthesis was white crystals having m.p.
205-207 °C in 80.95% yield. The synthesis of 5,7-diallyl-25,26,27,28-tetrahydroxy-calix[4]arene gave light yellow
crystals having m.p. 214-216 °C in 78.67% yield. The polymerization gave poly(5,7-diallyl-25,26,27,28-tetrahydroxycalix[
4]arene) having m.p. 338-340 °C, in 60% yield. Its estimated has a relative molecular weight of 18,738
g/mol with the number of unit repetition about 37 monomer units.
Keywords: Diallylation, polymerization, Poly-5,7-diallyl-25,26,27,28-tetrahydroxycalix[4]aren
SINTESIS KOPOLI(ANETOL-DVB) SULFONAT SEBAGAI BAHAN ALTERNATIF RESIN PENUKAR KATION
ABSTRACT   A synthesis of copolymer anethole-divinylbenzene (DVB) by cationic polymerization followed with sulfonation reaction has been done. The aim of this research is to synthesize of copolymer as cation exchange resin. Cationic copolymerization of anethole-DVB was done by using BF3O(C2H5)2 catalyst, without medium and under nitrogen atmosphere condition. Sulfonation reaction was done by H2SO4 reagent and Ag2SO4 catalyst. The structural prediction of the synthesis yield was done by functional groups analysis with FTIR spectrophotometer, while characterization of copolymer was done by thermal analysis using DTA (Differencial Thermal Analysis). The relative molecular weight of copolymer was determined by viscometry method. The copolymer tested as cation exchange resin by exchanging H+ (SO3H group) with Ca2+ in a column. The level of cationic exchanging capacity of copoly(anethole-DVB) sulfonat resin was determined by measuring the Ca2+ that replace H+ at resin using AAS.   Result of copolymerization of anethole-DVB was moon green coloured solid with relative molecular weight equal to 24,789 g/mole. Result of sulfonation was purple colored solid. Result of DTA analysis showed that degradation of copoly(anethole-DVB) begin at 550 oC, while degradation of copoly(anethole-DVB) sulfonate begin at 840 oC. AAS analysis showed the exchanging capacity of copoly(anethole-DVB) sulfonate equal to 296.756 meq Ca2+ ion/g of copolymer.Keywords   :   Anethole, cationic copolymerization, sulfonation reaction, cation exchange resin, copoly(anethole-DVB) sulfonat
SINTESIS KOPOLI(ANETOL-DVB) SULFONAT SEBAGAI BAHAN ALTERNATIF RESIN PENUKAR KATION
ABSTRACT   A synthesis of copolymer anethole-divinylbenzene (DVB) by cationic polymerization followed with sulfonation reaction has been done. The aim of this research is to synthesize of copolymer as cation exchange resin. Cationic copolymerization of anethole-DVB was done by using BF3O(C2H5)2 catalyst, without medium and under nitrogen atmosphere condition. Sulfonation reaction was done by H2SO4 reagent and Ag2SO4 catalyst. The structural prediction of the synthesis yield was done by functional groups analysis with FTIR spectrophotometer, while characterization of copolymer was done by thermal analysis using DTA (Differencial Thermal Analysis). The relative molecular weight of copolymer was determined by viscometry method. The copolymer tested as cation exchange resin by exchanging H+ (SO3H group) with Ca2+ in a column. The level of cationic exchanging capacity of copoly(anethole-DVB) sulfonat resin was determined by measuring the Ca2+ that replace H+ at resin using AAS.   Result of copolymerization of anethole-DVB was moon green coloured solid with relative molecular weight equal to 24,789 g/mole. Result of sulfonation was purple colored solid. Result of DTA analysis showed that degradation of copoly(anethole-DVB) begin at 550 oC, while degradation of copoly(anethole-DVB) sulfonate begin at 840 oC. AAS analysis showed the exchanging capacity of copoly(anethole-DVB) sulfonate equal to 296.756 meq Ca2+ ion/g of copolymer.Keywords   :   Anethole, cationic copolymerization, sulfonation reaction, cation exchange resin, copoly(anethole-DVB) sulfonat
ADSORPSI ION LOGAM Pb(II), Cd(Il) dan Cr(III) OLEH POLl 5 ALLIL-KALIKS [4] ARENA TETRAESTER (Adsorption of Pb(II), Cd(II), and Cr(IIl) by Poly-5-allyl-calix{4]arene tetraester)
Penelitian ini bertujuan untuk mengkaji pemanfaatan poli-5-allilkaliks[4]arena tetraester sebagai adsorben kation logam berat. Adsorpsi dilakukan dengan metode batch pada variasi keasaman (pH), waktu kontak dan konsentrasi awal ion logam. Hasil eksperimen menunjukkan bahwa pH optimum adsorpsi adalah pH 4,0 untuk ion logam Pb(II) dan Cd(II), sedangkan untuk Cr(III) pada pH 6,0. Waktu kontak optimum adsorpsi ion logam Cd(II) dan Cr(III) adalah 135 menit, sedangkan untuk ion logam Pb(II) adalah 180 menit. Kajian kinetika adsorpsi menunjukkan bahwa adsorpsi ion logam Pb(II), Cd(II) dan Cr(III) menggunakan adsorben poli-5-allilkaliks[4]arena tetraester mengikuti model kinetika Ho, pseudo orde 2, dengan konstanta laju adsorpsi berturut-turut 10ֿ³, 9x1Oֿ³dan 3,6x10ֿ² g molֿ¹ menitֿ¹. Kajian isotherm menunjukkan bahwa adsorpsi ion logam Pb(II) cenderung mengikuti isotherm Freundlich, sedangkan adsorpsi ion Cd(II) dan Cr(III) cenderung mengikuti isotherm Langmuir. Kapasitas maksimum adsorpsi ion logam Pb(II), Cd(II) dan Cr(III) masing-masing sebesar 187,6345,63 clan197,25 µmo/g, dengan energi adsorpsi berturut-turut 23,1415,18 dan27,15 KJ/mol.
The aim research is application ofpoly-5-allyl-calix{4}arene tetraester as adsorbent of heavy metal cations. Adsorption was carried out towards Pb(II). Cd(ll) and Cr(lIl) ions in batch system. Several variables including pH, contact time and initial concentration of metal ions were determined. The optimum adsorption conditions were achieved at pH 4.0for Pb(lI) and Cd(II), while at pH 6.0for Cr(llI) ions. In addition, the optimum contact time of Cd(lI) and Cr(llI) ions adsorption were 135 minutes, while thosefor Pb(lI) ion was 180 minutes. The adsorption kinetics of Pb(II). Cd(lI) and Cr(lIl) ions using the calixarene polymer adsorbentfollowed a fseudo 2nd order kinetics model, with adsorption rate constants of 10ֿ³, 9x10ֿ³ dan 3,6x10ֿ² g moleֿ¹ minֿ¹ , respectively. Furthermore, The adsorption isotherm of Pb(lI) ion tends tofollow the Freundlich isotherm, whereas the adsorption of Cd(lI) and Cr (III) ions tends to follow the Langmuir isotherm. The adsorption capacity of Pb(II), Cd(lI) and Cr(lIl) metal ions were 87.63, 45.63 and 197.25 µmole/g, with adsorption energy of 23.14, 15.18 and 27./5 KJ / mole, respectively