30 research outputs found

    Synthesis of Poly(di-allylcalix[4]arene) resin as Cationic Heavy Metal

    Get PDF
    Phenol is one of petrochemical products which is cheap and easy to obtain. This research was done with the intention of convert phenols to valuable products which have higher economic value for example phenol transformation to calix[4]arene. Active site of calixarenes which have important role to the adsorption, extraction, and complexation are the presence of hydroxyl groups located in a line to form cyclic structure and the existence of molecule cavity forming like vase or cup shapes. With regard to calixarenes, it have proved that this compound can be used for heavy metal cationic adsorption. In the form of polymerization, the cyclic hydroxyl groups and calix[4]arenes cavity are arranged in a series forming a tunnel like structure. Based on this phenomenon, this research was carried out to synthesize calix[4]arene polymers having two allyl groups. Due to the existence of the two allyl groups, cross link reaction between calix[4]arene was taken place. This makes the molecules immobile and it can be predicted that the adsorption process for heavy metal cationic will be higher. In the first year, the synthesis of poly(di-allylcalix[4]arene) from phenol were performed in experimental series as follows: (1) Alkylation of phenol using p-tbutylchloride and AlCl3 to p-t-butylphenol, (2) Cyclotetramerization of p-tbutylphenol with NaOH and paraformaldehyde to p-butylcalix[4]arene, (3) Debutylation of p-butylcalix[4]arene using AlCl3 and phenol to tetrahydroxycalix[4]arene, (4) Allylation reaction using allylbromide to allyloxydihydroxycalix[4]arene, (5) Claisen rearrangement reaction, (6) Cationic polymerization to diallylcalix[4]arenes. The second year, the poly-diallylcalix[4]arenes were applicated as an adsorbent of heavy metal cations (Pb(II) and Cr(III)). Adsorbent used in adsorption process were three adsorbent, there are 25,26,27,26-tetrahydroxycalix[4]arene (M), poly-25-27-diallyloxy-26,28- dihidroxy[4]arene (PD) and poly-5,7-diallyl-25,26,27,28-tetrahidoxycalix[4]arene (PCD). Adsorption was carried out towards Pb(II) and Cr(III) ions in batch system. Several variables including pH, contact time and initial concentration of metal ions were determined. The optimum pH of adsorption of metal ions Pb (II) was pH 5.0 for the three adsorbents, while the adsorption of metal ions Cr (III) at pH 5.5 for adsorbent M and PCD, and those for adsorbent PD was pH 5.0. In addition, the optimum contact time of Pb (II) ion adsorption was 180 minutes for the adsorbent M, while those for the adsorbent PD and PCD were 135 minutes. The optimum contact time of Cr (III) ion adsorption were 180 minutes for the adsorbent M and PD, while those the adsorbent PCD was 135 minutes. The adsorption kinetics of Pb(II) and Cr(III) ions using three adsorbent (M, PD and PCD) followed a pseudo 2 nd order kinetics model. Furthermore, The adsorption isotherm of Pb(II) ions using three adsorbent tends to follow the Langmuir isotherm, whereas the adsorption of Cr (III) using three adsorbent tends to follow the Freundlich isotherm. The adsorption capacity of Pb(II) metal ions using M,PD and PCD were 115.03, 102.19 and 125.82 μmole/g, with adsorption energy of 27.69, 28.74 and 28.12 KJ / mole, respectively. Whlie The adsorption capacity of Cr(III) metal ions using M,PD and PCD were 163.98, 178.57 and 238.59 μmole/g, with adsorption energy of 25.63, 27.65 and 25.53 KJ / mole, respectively

    SINTESIS POLI-5-ALLILKALIKS[4]ARENA DAN TURUNAN ESTER SERTA ASAM KARBOKSILATNYA SEBAGAI ADSORBEN DAN ANTIDOTUM KERACUNAN LOGAM BERAT

    Get PDF
    Telah dilakukan sintesis senyawa seri poli-5-allilkaliks[4]arena yang meliputi poli-5- allil-25,26,27,28-tetrahidroksikaliks[4]arena (PK[4]H), poli-5-allilkaliks[4]-arena tetra ester (PK[4]E) dan poli-5-allilkaliks[4]arena tetra asam asetat (PK[4]A). Apakah senyawa hasil sintesis dapat digunakan sebagai adsorben baik dalam bidang industri maupun sebagai antidotum dikaji dalam penelitian ini. Sintesis seri poli-5-allilkaliks[4]arena ini dilakukan melalui tahapan reaksi: (1) sintesis p-t-butilkaliks[4]arena, (2) debutilasi, (3) sintesis 25-alliloksi-,26,27,28- trihidroksikaliks[4]arena (kaliksarena 1), (4) sintesis 5-allil-25,26,27,28- tetrahidroksikaliks[4]arena (kaliksarena 2), (5) esterifikasi kaliksarena 2 sehingga diperoleh 5- allilkaliks[4] tetraester (kaliksarena 3), (6) hidrolisis kaliksarena 3 menghasilkan 5- allilkaliks[4]arena tetra asam asetat (kaliksarena 4), (7) polimerisasi kationik terhadap kaliksarena 2,3 dan 4. Uji adsorpsi PK[4]H, PK[4]E dan PK[4]A dilakukan menggunakan metode batch, sedangkan uji aktivitas antidotum dan keamanannya dilakukan secara in vivo. Sintesis kaliksarena 1, 2, 3 dan 4 menghasilkan produk dengan rendemen 88,36%; 78,33%, 44,33% dan 84,52%. Polimerisasi kaliksarena 2, 3 dan 4 menghasilkan produk PK[4]H, PK[4]E dan PK[4]A dengan titik leleh berturut-turut 292-295, 298-300 dan 300-303 °C dan rendemen masing-masing 85, 70 dan 87,18%, serta berat molekul relatif berturut-turut 109.943; 84.510 dan 63.171 mol/g, dengan unit pengulang 273, 104 dan 91. Hasil uji adsorpsi menunjukkan bahwa pengaruh pH terhadap proses adsorpsi berbeda-beda untuk masing- masing spesies, tergantung dari jenis adsorben dan spesies logam yang akan diadsorpsi. Kajian kinetika adsorpsi menunjukkan bahwa adsorpsi ion logam Pb(II), Cd(II) dan Cr(III) menggunakan ketiga adsorben PK[4]H, PK[4]E dan PK[4]A, mengikuti model kinetika Ho, orde pseudo 2. Kapasitas maksimum adsorpsi menggunakan ketiga adsorben PK[4]H, PK[4]E dan PK[4]A mempunyai kapasitas terbesar pada adsorpsi dengan logam Cr(III) yaitu masing- masing sebesar 208,02; 197,25 dan 228,69 µmol/g, dengan energi adsorpsi berturut-turut 27,57; 27,15 dan 31,07 kJ/mol. Koefisien partisi PK[4]H pada pH 3,5 dan 7,4 berturut-turut 1,62 ± 0,1 dan 1,62 ± 0,07. Berdasarkan hasil uji in vitro penyerapan logam-logam essensial, maka dapat disimpulkan bahwa penggunaan PK[4]H sebagai antidotum keracunan logam Cd(II) harus disertai dengan pemberian suplemen yang mengandung Fe, Ca dan Zn. Uji toksisitas akut menunjukkan bahwa bahan uji mempunyai LD50 lebih besar dari 260 mg/kg BB mencit. Pemberian obat PK[4]H sebagai antidotum dapat menurunkan kandungan Cd dalam ginjal, hati dan darah. Uji aktivitas antidotum menunjukkan bahwa dosis efektif dari PK[4]H sebagai antidotum keracunan Cd adalah dosis 2 (0,65 mg/kg BB). Kata kunci : poli-5-allilkaliks[4]arena; adsorpsi Cd(II), Pb(II) dan Cr(III); antidotum Cd

    PEMBUATAN MIKROKAPSUL KITOSAN GEL TERSAMBUNG SILANG ETILEN GLIKOL DIGLISIDIL ETER (Psf-Egde-Cts) SEBAGAI ADSORBEN ZAT WARNA Procion Red Mx 8b ( PREPARATION OF MICROCAPSULE OF CHITOSAN GEL BEADS CROSSLINKED WITH ETHYLENE GLYCOL DIGLYCIDYL ETHER (Psf-Egde-Cts) AS ADSORBENT FOR Procion Red Mx 8b Dye)

    Get PDF
    Microcapsules of chitosan gel beads crosslinked with Ethylene Glycol Diglycidyl Ether (PSF-EGDE-CTS) were prepared to improve adsorption capacity and mechanical stability of chitosan at acidic condition. These microcapsules were prepared through three step i.e. the formation of gel beads (CTS), crosslinked CTS with EGDE (EGDE-CTS) and microencapsulation of EGDE-CTS with Polysulfone (PSF-EGDE-CTS). Product characterizations were carried out using FTIR and SEM. The adsorptions were carried out by variation of pH and contact time in order to determine the optimum condition of adsorption. The yield of Microcapsules PSF-EGDE-CTS was 94,79 wt %. The optimum condition of Procion Red MX 8B dye adsorption by PSF-EGDE-CTS is at pH 5 and 24 hours of contact time. The adsorption capacity of PSF-EGDE-CTS is 40,69 mg/g. Keywords : adsorption, chitosan, crosslink, microcapsules, Procion Red MX 8B. Mikrokapsul kitosan gel tersambung silang etilen glikol diglisidil eter (PSF-EGDE-CTS) telah dibuat untuk meningkatkan kemampuan adsorpsi dan stabilitas kitosan dalam kondisi asam. Mikrokapsul PSF-EGDE-CTS dibuat melalui tiga tahap yaitu pembentukan gel (CTS), proses sambung silang dengan EGDE (EGDE-CTS) dan mikroenkapsulasi dengan PSF (PSF-EGDE-CTS). Karakterisasi hasil sintesis dilakukan dengan spektroskopi FTIR dan SEM. Selanjutnya PSF-EGDE-CTS digunakan untuk uji adsorpsi limbah zat warna Procion Red MX 8B. Adsorpsi zat warna Procion Red MX 8B oleh kitosan termodifikasi dilakukan dengan variasi pH dan waktu kontak untuk mencari kondisi optimum adsorpsi. Mikrokapsul PSF-EGDE-CTS yang diperoleh adalah 94,79% (b/b). Kondisi optimum adsorpsi zat warna Procion Red MX 8B oleh PSF-EGDE-CTS terjadi pada pH 5 dan waktu kontak 24 jam. Daya serap PSF-EGDE-CTS pada uji adsorpsi limbah zat warna Procion Red MX 8B adalah sebesar 40,69 mg/g. Kata kunci : adsorpsi, kitosan, mikrokapsul, Procion Red MX 8B

    Sintesis Kopoli(Eugenol-DVB) Sulfonat dari Eugenol Komponen Utama Minyak Cengkeh (Syzygium aromaticum)

    Get PDF
    Cationic co-polymerization between eugenol and divinilbenzene (DVB) (2%, 4%, 6%, 8%, 10% and 12%) with BF3O(C2H5)2 as a catalyst at room temperature without media under nitrogen atmosphere has been investigated. Co-poly (eugenol sulfonate)-DVB has been synthesized by sulfonation of co-poly(eugenol-DVB). In the sulfonation, concentrated sulfuric acid was used as the reagent and Ag2SO4 as a catalyst. Structure and characterization of co-poly (eugenol-DVB) and Co-poly(eugenol sulfonate)-DVB were analyzed by Infra Red (IR), Defferential Thermal Analysis) DTA and UV-Vis. Measurement of the number-average molecular weight (Mn) of copolymer were used Ostwald capillary viscometer. The yields of co-polymerization of eugenol-DVB were solid matter and the highest result was found on a copolymer of 10% of DVB. Its melting point was 69.33o C. The increasing of mole of DVB increase the number-average molecular weight (Mn) of co-poly (eugenol sulfonate)-DVB. A copolymer of 12% of DVB gave the highest molecular weight, Mn = 2984 g/mole. Synthesized of co-poly (eugenol sulfonate)-DVB were solid matter too and the highest result was found on a copolymer of 12% of DVB. Its melting point was 95.5o C. Keywords: Co-polymerization, Sulfonation, Co-poly(eugenol sulfonate)-DV

    Sintesis Senyawa Komponen Parfum Etil p-Anisat dari Anetol

    Get PDF
    Synthesis of ethyl p-anisate from anethole have been done. Ethyl p-anisate is ester coumpound which can use as perfume component. p-anisic acid was synthesized from anethole (1 mole) which oxidixed by KMnO4 (3 moles) at 40o C for 2 hours. Esterification with ethanol carried out at 78,5o C for 6 hours. Identification and determination structure coumpound of product synthesis used spectroscophic methodes (GC, GC-MS and IR). Anethole has been isolated from anise oil as 90,3%. p-Anisic acid and ethyl p-anisate as synthesized products got 45% and 79,9% respectively. Keywords: anethole, p-anisic acid, esterification, ethyl p-anisate

    SYNTHESIS OF POLY -5,7 -DIALL YL-25,26,27,28-TETRAHYDROXYCALlX[4]ARENE

    Get PDF
    ABSTRACT The synthesis of poly-5,7-diallyl-25,26,27,28-tetrahydroxycalix[4]arenewere performed in experimental series as follows: (1) Cyclotetramerizationof p-t-butylphenol with NaOH and paraformaldehyde to p-butylcalix[4]arene, (2) Debutylation of p-butylcalix[4]arene using AICI3and phenol to tetrahydroxycalix[4]arene,(3) Allylation reaction using allylbromide to diallyloxy-dihydroxycalix[4]arene,(4) Claisen rearrangement reaction, (5) Cationic polymerization to diallylcalix[4]arenesA.ll of the synthesizedproductswere analyzedby meansof IR spectrometerand 1H-NMR spectrometer. The result of 25,27-diallyloxy-26,28-dihydroxycalix[4]arenesynthesis was white crystals having m.p. 205-207 °C in 80.95% yield. The synthesis of 5,7-diallyl-25,26,27,28-tetrahydroxy-calix[4]arenegave light yellow crystals having m.p. 214-216 °C in 78.67% yield. The polymerization gave poly(5,7-diallyl-25,26,27,28-tetrahydroxycalix[ 4]arene)having m.p. 338-340 °C, in 60% yield. Its estimated has a relative molecular weight of 18,738 glmol with the number of unit repetition about 37 monomer units. Keywords: Diallylation, polymerization, Poly-5, 7-diallyl-25, 26, 27,28-tetrahydroxycalix[4]aren

    SYNTHESIS OF POLY-5,7-DIALLYL-25,26,27,28-TETRAHYDROXYCALIX[4]ARENE

    Get PDF
    The synthesis of poly-5,7-diallyl-25,26,27,28-tetrahydroxycalix[4]arene were performed in experimental series as follows: (1) Cyclotetramerization of p-t-butylphenol with NaOH and paraformaldehyde to p-butylcalix[4]arene, (2) Debutylation of p-butylcalix[4]arene using AlCl3 and phenol to tetrahydroxycalix[4]arene, (3) Allylation reaction using allylbromide to diallyloxy-dihydroxycalix[4]arene, (4) Claisen rearrangement reaction, (5) Cationic polymerization to diallylcalix[4]arenes. All of the synthesized products were analyzed by means of IR spectrometer and 1H-NMR spectrometer. The result of 25,27-diallyloxy-26,28-dihydroxycalix[4]arene synthesis was white crystals having m.p. 205-207 °C in 80.95% yield. The synthesis of 5,7-diallyl-25,26,27,28-tetrahydroxy-calix[4]arene gave light yellow crystals having m.p. 214-216 °C in 78.67% yield. The polymerization gave poly(5,7-diallyl-25,26,27,28-tetrahydroxycalix[ 4]arene) having m.p. 338-340 °C, in 60% yield. Its estimated has a relative molecular weight of 18,738 g/mol with the number of unit repetition about 37 monomer units. Keywords: Diallylation, polymerization, Poly-5,7-diallyl-25,26,27,28-tetrahydroxycalix[4]aren

    SINTESIS KOPOLI(ANETOL-DVB) SULFONAT SEBAGAI BAHAN ALTERNATIF RESIN PENUKAR KATION

    Get PDF
    ABSTRACT    A synthesis of copolymer anethole-divinylbenzene (DVB) by cationic polymerization followed with sulfonation reaction has been done. The aim of this research is to synthesize of copolymer as cation exchange resin. Cationic copolymerization of anethole-DVB was done by using BF3O(C2H5)2 catalyst, without medium and under nitrogen atmosphere condition. Sulfonation reaction was done by H2SO4 reagent and Ag2SO4 catalyst. The structural prediction of the synthesis yield was done by functional groups analysis with  FTIR spectrophotometer, while characterization of copolymer was done by thermal analysis using DTA (Differencial Thermal Analysis). The relative molecular weight of copolymer was determined by viscometry method. The copolymer tested as cation exchange resin by exchanging H+ (SO3H group) with Ca2+ in a column. The level of cationic exchanging capacity of copoly(anethole-DVB) sulfonat resin was determined by measuring the Ca2+ that replace H+ at resin using AAS.    Result of copolymerization of anethole-DVB was moon green coloured solid with relative molecular weight equal to 24,789 g/mole. Result of sulfonation was purple colored solid. Result of DTA analysis showed that degradation of copoly(anethole-DVB) begin at 550 oC, while degradation of copoly(anethole-DVB) sulfonate begin at 840 oC. AAS analysis showed the exchanging capacity of copoly(anethole-DVB) sulfonate equal to 296.756 meq Ca2+ ion/g of copolymer.Keywords    :    Anethole, cationic copolymerization, sulfonation reaction, cation exchange resin, copoly(anethole-DVB) sulfonat

    SINTESIS KOPOLI(ANETOL-DVB) SULFONAT SEBAGAI BAHAN ALTERNATIF RESIN PENUKAR KATION

    Get PDF
    ABSTRACT    A synthesis of copolymer anethole-divinylbenzene (DVB) by cationic polymerization followed with sulfonation reaction has been done. The aim of this research is to synthesize of copolymer as cation exchange resin. Cationic copolymerization of anethole-DVB was done by using BF3O(C2H5)2 catalyst, without medium and under nitrogen atmosphere condition. Sulfonation reaction was done by H2SO4 reagent and Ag2SO4 catalyst. The structural prediction of the synthesis yield was done by functional groups analysis with  FTIR spectrophotometer, while characterization of copolymer was done by thermal analysis using DTA (Differencial Thermal Analysis). The relative molecular weight of copolymer was determined by viscometry method. The copolymer tested as cation exchange resin by exchanging H+ (SO3H group) with Ca2+ in a column. The level of cationic exchanging capacity of copoly(anethole-DVB) sulfonat resin was determined by measuring the Ca2+ that replace H+ at resin using AAS.    Result of copolymerization of anethole-DVB was moon green coloured solid with relative molecular weight equal to 24,789 g/mole. Result of sulfonation was purple colored solid. Result of DTA analysis showed that degradation of copoly(anethole-DVB) begin at 550 oC, while degradation of copoly(anethole-DVB) sulfonate begin at 840 oC. AAS analysis showed the exchanging capacity of copoly(anethole-DVB) sulfonate equal to 296.756 meq Ca2+ ion/g of copolymer.Keywords    :    Anethole, cationic copolymerization, sulfonation reaction, cation exchange resin, copoly(anethole-DVB) sulfonat

    ADSORPSI ION LOGAM Pb(II), Cd(Il) dan Cr(III) OLEH POLl 5 ALLIL-KALIKS [4] ARENA TETRAESTER (Adsorption of Pb(II), Cd(II), and Cr(IIl) by Poly-5-allyl-calix{4]arene tetraester)

    Get PDF
    Penelitian ini bertujuan untuk mengkaji pemanfaatan poli-5-allilkaliks[4]arena tetraester sebagai adsorben kation logam berat. Adsorpsi dilakukan dengan metode batch pada variasi keasaman (pH), waktu kontak dan konsentrasi awal ion logam. Hasil eksperimen menunjukkan bahwa pH optimum adsorpsi adalah pH 4,0 untuk ion logam Pb(II) dan Cd(II), sedangkan untuk Cr(III) pada pH 6,0. Waktu kontak optimum adsorpsi ion logam Cd(II) dan Cr(III) adalah 135 menit, sedangkan untuk ion logam Pb(II) adalah 180 menit. Kajian kinetika adsorpsi menunjukkan bahwa adsorpsi ion logam Pb(II), Cd(II) dan Cr(III) menggunakan adsorben poli-5-allilkaliks[4]arena tetraester mengikuti model kinetika Ho, pseudo orde 2, dengan konstanta laju adsorpsi berturut-turut 10&#1471³, 9x1O&#1471³dan 3,6x10&#1471² g mol&#1471¹ menit&#1471¹. Kajian isotherm menunjukkan bahwa adsorpsi ion logam Pb(II) cenderung mengikuti isotherm Freundlich, sedangkan adsorpsi ion Cd(II) dan Cr(III) cenderung mengikuti isotherm Langmuir. Kapasitas maksimum adsorpsi ion logam Pb(II), Cd(II) dan Cr(III) masing-masing sebesar 187,6345,63 clan197,25 µmo/g, dengan energi adsorpsi berturut-turut 23,1415,18 dan27,15 KJ/mol. The aim research is application ofpoly-5-allyl-calix{4}arene tetraester as adsorbent of heavy metal cations. Adsorption was carried out towards Pb(II). Cd(ll) and Cr(lIl) ions in batch system. Several variables including pH, contact time and initial concentration of metal ions were determined. The optimum adsorption conditions were achieved at pH 4.0for Pb(lI) and Cd(II), while at pH 6.0for Cr(llI) ions. In addition, the optimum contact time of Cd(lI) and Cr(llI) ions adsorption were 135 minutes, while thosefor Pb(lI) ion was 180 minutes. The adsorption kinetics of Pb(II). Cd(lI) and Cr(lIl) ions using the calixarene polymer adsorbentfollowed a fseudo 2nd order kinetics model, with adsorption rate constants of 10&#1471³, 9x10&#1471³ dan 3,6x10&#1471² g mole&#1471¹ min&#1471¹ , respectively. Furthermore, The adsorption isotherm of Pb(lI) ion tends tofollow the Freundlich isotherm, whereas the adsorption of Cd(lI) and Cr (III) ions tends to follow the Langmuir isotherm. The adsorption capacity of Pb(II), Cd(lI) and Cr(lIl) metal ions were 87.63, 45.63 and 197.25 µmole/g, with adsorption energy of 23.14, 15.18 and 27./5 KJ / mole, respectively
    corecore