25 research outputs found

    Assessment of Equine Autoimmune Thrombocytopenia (EAT) by flow cytometry

    Get PDF
    RATIONALE: Thrombocytopenia is a platelet associated process that occurs in human and animals as result of i) decreased production; ii) increased utilization; iii) increased destruction coupled to the presence of antibodies, within a process know as immune-mediated thrombocytopenia (IMT); or iv) platelet sequestration. Thus, the differentiation of the origin of IMT and the development of reliable diagnostic approaches and methodologies are important in the clarification of IMT pathogenesis. Therefore, there is a growing need in the field for easy to perform assays for assessing platelet morphological characteristics paired with detection of platelet-bound IgG. OBJECTIVES: This study is aimed to develop and characterize a single color flow cytometric assay for detection of platelet-bound IgG in horses, in combination with flow cytometric assessment of platelet morphological characteristics. FINDINGS: The FSC and SSC evaluation of the platelets obtained from the thrombocytopenic animals shows several distinctive features in comparison to the flow cytometric profile of platelets from healthy animals. The thrombocytopenic animals displayed i) increased number of platelets with high FSC and high SSC, ii) a significant number of those gigantic platelets had strong fluorescent signal (IgG bound), iii) very small platelets or platelet derived microparticles were found significantly enhanced in one of the thrombocytopenic horses, iv) significant numbers of these microplatelet/microparticles/platelet-fragments still carry very high fluorescence. CONCLUSIONS: This study describes the development and characterization of an easy to perform, inexpensive, and noninvasive single color flow cytometric assay for detection of platelet-bound IgG, in combination with flow cytometric assessment of platelet morphological characteristics in horses

    Sertoli cells maintain leydig cell number and peritubular myoid cell activity in the adult mouse testis

    Get PDF
    The Sertoli cells are critical regulators of testis differentiation and development. In the adult, however, their known function is restricted largely to maintenance of spermatogenesis. To determine whether the Sertoli cells regulate other aspects of adult testis biology we have used a novel transgenic mouse model in which Amh-Cre induces expression of the receptor for Diphtheria toxin (iDTR) specifically within Sertoli cells. This causes controlled, cell-specific and acute ablation of the Sertoli cell population in the adult animal following Diphtheria toxin injection. Results show that Sertoli cell ablation leads to rapid loss of all germ cell populations. In addition, adult Leydig cell numbers decline by 75% with the remaining cells concentrated around the rete and in the sub-capsular region. In the absence of Sertoli cells, peritubular myoid cell activity is reduced but the cells retain an ability to exclude immune cells from the seminiferous tubules. These data demonstrate that, in addition to support of spermatogenesis, Sertoli cells are required in the adult testis both for retention of the normal adult Leydig cell population and for support of normal peritubular myoid cell function. This has implications for our understanding of male reproductive disorders and wider androgen-related conditions affecting male health
    corecore