7 research outputs found

    EFFECTS OF FASTING ON PRAVASTATIN DISPOSITION IN PERFUSED RAT LIVER

    Get PDF
    Objective: Various nutrients such as glucose and cholesterol affect the expression of hepatic transporters. Although the pharmacokinetics of some drugs is affected by fasting, the fasting effects on drug hepatic disposition via alterations in transporters are unclear. Organic anion-transporting polypeptides and multidrug resistance-associated protein 2 (Mrp2/Abcc2) expressed in the liver are involved in hepatic disposition of pravastatin.Methods: An in situ perfused rat liver system was established. The mRNA and protein levels of transporters in the liver were examined by real-time reverse transcription PCR and western blotting. The localization of Mrp2 in hepatocytes was determined by immunostaining.Results: Pravastatin was rapidly eliminated from the perfusate. The cumulative biliary excretion amounts of pravastatin in fasting rats were significantly lower from 10 min compared with control. In fasting rats, the area under the plasma concentration-time curve (AUC)0‒∞ of pravastatin in the perfusate was significantly decreased, and hepatic clearance (CLh) and hepatic corrected clearance (CLcor) were significantly increased. The biliary clearance (CLbile) in fasting rats tended to decrease compared with that in control rats. Protein expression levels of transporters were unchanged after fasting. Confocal microscopy revealed a disruption of Mrp2 and ZO-1 colocalization in the liver of fasting rats.Conclusion: The biliary excretion of pravastatin was inhibited by fasting via decreased Mrp2 localization on the canalicular membrane

    Mixed-Valent Trinuclear Co<sup>III</sup>-Co<sup>II</sup>-Co<sup>III</sup> Complex with 1,3-Bis(5-chlorosalicylideneamino)-2-propanol

    No full text
    A mixed-valent trinuclear complex with 1,3-bis(5-chlorosalicylideneamino)-2-propanol (H3clsalpr) was synthesized, and the crystal structure was determined by the single-crystal X-ray diffraction method at 90 K. The molecule is a trinuclear CoIII-CoII-CoIII complex with octahedral geometries, having a tetradentate chelate of the Schiff-base ligand, bridging acetate, monodentate acetate coordination to each terminal Co3+ ion and four bridging phenoxido-oxygen of two Schiff-base ligands, and two bridging acetate-oxygen atoms for the central Co2+ ion. The electronic spectral feature is consistent with the mixed valent CoIII-CoII-CoIII. Variable-temperature magnetic susceptibility data could be analyzed by consideration of the axial distortion of the central Co2+ ion with the parameters Δ = –254 cm−1, λ = –58 cm−1, κ = 0.93, tip = 0.00436 cm3 mol−1, θ = –0.469 K, gz = 6.90, and gx = 2.64, in accordance with a large anisotropy. The cyclic voltammogram showed an irreversible reduction wave at approximately −1.2 V·vs. Fc/Fc+, assignable to the reduction of the terminal Co3+ ions

    Haem-dependent dimerization of PGRMC1/Sigma-2 receptor facilitates cancer proliferation and chemoresistance

    Get PDF
    Progesterone-receptor membrane component 1 (PGRMC1/Sigma-2 receptor) is a haem-containing protein that interacts with epidermal growth factor receptor (EGFR) and cytochromes P450 to regulate cancer proliferation and chemoresistance; its structural basis remains unknown. Here crystallographic analyses of the PGRMC1 cytosolic domain at 1.95 Å resolution reveal that it forms a stable dimer through stacking interactions of two protruding haem molecules. The haem iron is five-coordinated by Tyr113, and the open surface of the haem mediates dimerization. Carbon monoxide (CO) interferes with PGRMC1 dimerization by binding to the sixth coordination site of the haem. Haem-mediated PGRMC1 dimerization is required for interactions with EGFR and cytochromes P450, cancer proliferation and chemoresistance against anti-cancer drugs; these events are attenuated by either CO or haem deprivation in cancer cells. This study demonstrates protein dimerization via haem-haem stacking, which has not been seen in eukaryotes, and provides insights into its functional significance in cancer

    O-Glycan-Altered Extracellular Vesicles: A Specific Serum Marker Elevated in Pancreatic Cancer

    No full text
    Pancreatic cancer (PC) is among the most lethal malignancies due to an often delayed and difficult initial diagnosis. Therefore, the development of a novel, early stage, diagnostic PC marker in liquid biopsies is of great significance. In this study, we analyzed the differential glycomic profiling of extracellular vesicles (EVs) derived from serum (two cohorts including 117 PC patients and 98 normal controls) using lectin microarray. The glyco-candidates of PC-specific EVs were quantified using a high-sensitive exosome-counting system, ExoCounter. An absolute quantification system for altered glycan-containing EVs elevated in PC serum was established. EVs recognized by O-glycan-binding lectins ABA or ACA were identified as candidate markers by lectin microarray. Quantitative analyses using ExoCounter revealed that the ABA- or ACA-positive EVs were significantly increased in the culture of PC cell lines or in the serum of PC patients including carbohydrate antigen 19-9 negative patients with high area under curve values. The elevated numbers of EVs in PC serum returned to normal levels after pancreatectomy. Histological examination confirmed that the tumors stained with ABA/ACA. These specific EVs with O-glycans recognized by ABA/ACA are elevated in PC sera and can act as potential biomarkers in a liquid biopsy for PC patients screening
    corecore