1,748 research outputs found

    Low Temperature Symmetry of Pyrochlore Oxide Cd2Re2O7

    Full text link
    We report the X-ray study for the pyrochlore oxide Cd2Re2O7. Two symmetry-lowering structural transitions were observed at Ts1=200K and Ts2=120K. The former is of the second order from the ideal cubic pyrochlore structure with space group Fd-3m to a tetragonally distorted structure with I-4m2, while the latter is of the first order likely to another tetragonal space group I4122. We discuss the feature of the lattice deformation.Comment: 4 pages, 4 figure

    High Pressure Effects on Superconductivity in the beta-pyrochlore Oxides AOs2O6 (A=K, Rb, Cs)

    Full text link
    Recently new pyrochlore oxides superconductors AOs2O6 (A=K,Rb,Cs) were found and we measured the pressure dependence of magnetization up to 1.2 GPa in order to deduce the pressure effect of Tc in the three beta-pyrochlore oxides. It is found that the initial pressure dependence of Tc is positive for all the compounds. Only KOs2O6 exhibits a saturation in Tc at 0.56 GPa and the downturn at higher pressureComment: 7 pages, 2 figure

    Hall effect in superconducting Fe(Se0.5Te0.5) thin films

    Full text link
    The Hall effect is investigated for eight superconducting Fe(Se_0.5_Te_0.5_) thin films grown on MgO and LaSrAlO_4_ substrates with different transition temperatures (T_c_). The normal Hall coefficients (R_H_) have positive values with magnitude of 1 - 1.5 x 10^-3^ cm^3^/C at room temperature for the all samples. With decreasing temperature, we find two characteristic types of behavior in R_H_(T) depending on T_c_. For thin films with lower T_c_ (typically T_c_ < 5 K), R_H_ start decreasing approximately below T = 250 K toward a negative side, some of which shows sign reversal at T = 50 - 60 K, but turns positive toward T = 0 K. On the other hand for the films with higher T_c_ (typically T_c_ > 9 K), R_ H_ leaves almost unchanged down to T = 100 K, and then starts decreasing toward a negative side. Around the temperatures when R_H_ changes its sign from positive to negative, obvious nonlinearity is observed in the field-dependence of Hall resistance as to keep the low-field R_H_ positive while the high-field R_H_ negative. Thus the electronic state just above T_c_ is characterized by n_e_ (electron density) > n_h_ (hole density) with keeping \mu_e_ < \mu_h_. These results suggest the dominance of electron density to the hole density is an essential factor for the occurence of superconductivity in Fe-chalcogenide superconductors.Comment: 11 pages, 4 figures, revised version for Physical Review B. accepted for publication in Physical Review

    New beta-Pyrochlore Oxide Superconductor CsOs2O6

    Full text link
    The discovery of a new beta-pyrochlore oxide superconductor CsOs2O6 with Tc = 3.3 K is reported. It is the third superconductor in the family of beta-pyrochlore oxides, following KOs2O6 with Tc = 9.6 K and RbOs2O6 with Tc = 6.3 K. The Tc of this series decreases with increasing the ionic radius of alkaline metal ions, imposing negative chemical pressure upon the Os pyrochlore lattice.Comment: submitted to J. Phys. Soc Jp

    Parker-Jeans Instability of Gaseous Disks Including the Effect of Cosmic Rays

    Full text link
    We use linear analysis to examine the effect of cosmic rays (CRs) on the Parker-Jeans instability of magnetized self-gravitating gaseous disks. We adopt a slab equilibrium model in which the gravity (including self-gravity) is perpendicular to the mid-plane, the magnetic field lies along the slab. CR is described as a fluid and only along magnetic field lines diffusion is considered. The linearised equations are solved numerically. The system is susceptible to Parker-Jeans instability. In general the system is less unstable when the CR diffusion coefficient is smaller (i.e., the coupling between the CRs and plasma is stronger). The system is also less unstable if CR pressure is larger. This is a reminiscence of the fact that Jeans instability and Parker instability are less unstable when the gas pressure is larger (or temperature is higher). Moreover, for large CR diffusion coefficient (or small CR pressure), perturbations parallel to the magnetic field are more unstable than those perpendicular to it. The other governing factor on the growth rate of the perturbations in different directions is the thickness of the disk or the strength of the external pressure on the disk. In fact, this is the determining factor in some parameter regimes.Comment: 19pages, 14figures submitted to Ap

    Crustal Heating and Quiescent Emission from Transiently Accreting Neutron Stars

    Get PDF
    Nuclear reactions occurring deep in the crust of a transiently accreting neutron star efficiently maintain the core at a temperature >5e7 K. When accretion halts, the envelope relaxes to a thermal equilibrium set by the flux from the hot core, as if the neutron star were newly born. For the time-averaged accretion rates typical of low-mass X-ray transients, standard neutrino cooling is unimportant and the core thermally re-radiates the deposited heat. The resulting luminosity has the same magnitude as that observed from several transient neutron stars in quiescence. Confirmation of this mechanism would strongly constrain rapid neutrino cooling mechanisms for neutron stars. Thermal emission had previously been dismissed as a predominant source of quiescent emission since blackbody spectral fits implied an emitting area much smaller than a neutron star's surface. However, as with thermal emission from radio pulsars, fits with realistic emergent spectra will imply a substantially larger emitting area. Other emission mechanisms, such as accretion or a pulsar shock, can also operate in quiescence and generate intensity and spectral variations over short timescales. Indeed, quiescent accretion may produce gravitationally redshifted metal photoionization edges in the quiescent spectra (detectable with AXAF and XMM). We discuss past observations of Aql~X-1 and note that the low luminosity X-ray sources in globular clusters and the Be star/X-ray transients are excellent candidates for future study.Comment: 5 pages, 2 ps figures, uses AASTEX macros. To appear in ApJ letters, 10 September 1998. Revised to conform with journal; minor numerical correction

    A Comparative Study of the Parker Instability under Three Models of the Galactic Gravity

    Get PDF
    To examine how non-uniform nature of the Galactic gravity might affect length and time scales of the Parker instability, we took three models of gravity, uniform, linear and realistic ones. To make comparisons of the three gravity models on a common basis, we first fixed the ratio of magnetic pressure to gas pressure at α\alpha = 0.25, that of cosmic-ray pressure at ÎČ\beta = 0.4, and the rms velocity of interstellar clouds at asa_s = 6.4 km s−1^{-1}, and then adjusted parameters of the gravity models in such a way that the resulting density scale heights for the three models may all have the same value of 160 pc. Performing linear stability analyses onto equilibrium states under the three models with the typical ISM conditions, we calculate the maximum growth rate and corresponding length scale for each of the gravity models. Under the uniform gravity the Parker instability has the growth time of 1.2×108\times10^{8} years and the length scale of 1.6 kpc for symmetric mode. Under the realistic gravity it grows in 1.8×107\times10^{7} years for both symmetric and antisymmetric modes, and develops density condensations at intervals of 400 pc for the symmetric mode and 200 pc for the antisymmetric one. A simple change of the gravity model has thus reduced the growth time by almost an order of magnitude and its length scale by factors of four to eight. These results suggest that an onset of the Parker instability in the ISM may not necessarily be confined to the regions of high α\alpha and ÎČ\beta.Comment: Accepted for publication in ApJ, using aaspp4.sty, 18 text pages with 9 figure

    Novel Cauchy-horizon instability

    Full text link
    The evolution of weak discontinuity is investigated on horizons in the nn-dimensional static solutions in the Einstein-Maxwell-scalar-Λ\Lambda system, including the Reissner-Nordstr\"om-(anti) de Sitter black hole. The analysis is essentially local and nonlinear. We find that the Cauchy horizon is unstable, whereas both the black-hole event horizon and the cosmological event horizon are stable. This new instability, the so-called kink instability, of the Cauchy horizon is completely different from the well-known ``infinite-blueshift'' instability. The kink instability makes the analytic continuation beyond the Cauchy horizon unstable.Comment: 6 pages, 1 figure, final version to appear in Physical Review

    Unstable Nonradial Oscillations on Helium Burning Neutron Stars

    Full text link
    Material accreted onto a neutron star can stably burn in steady state only when the accretion rate is high (typically super-Eddington) or if a large flux from the neutron star crust permeates the outer atmosphere. For such situations we have analyzed the stability of nonradial oscillations, finding one unstable mode for pure helium accretion. This is a shallow surface wave which resides in the helium atmosphere above the heavier ashes of the ocean. It is excited by the increase in the nuclear reaction rate during the oscillations, and it grows on the timescale of a second. For a slowly rotating star, this mode has a frequency of approximately 20-30 Hz (for l=1), and we calculate the full spectrum that a rapidly rotating (>>30 Hz) neutron star would support. The short period X-ray binary 4U 1820--30 is accreting helium rich material and is the system most likely to show this unstable mode,especially when it is not exhibiting X-ray bursts. Our discovery of an unstable mode in a thermally stable atmosphere shows that nonradial perturbations have a different stability criterion than the spherically symmetric thermal perturbations that generate type I X-ray bursts.Comment: Accepted for publication in Astrophysical Journal, 22 pages, 14 figure

    Convergence to a self-similar solution in general relativistic gravitational collapse

    Get PDF
    We study the spherical collapse of a perfect fluid with an equation of state P=kρP=k\rho by full general relativistic numerical simulations. For 0, it has been known that there exists a general relativistic counterpart of the Larson-Penston self-similar Newtonian solution. The numerical simulations strongly suggest that, in the neighborhood of the center, generic collapse converges to this solution in an approach to a singularity and that self-similar solutions other than this solution, including a ``critical solution'' in the black hole critical behavior, are relevant only when the parameters which parametrize initial data are fine-tuned. This result is supported by a mode analysis on the pertinent self-similar solutions. Since a naked singularity forms in the general relativistic Larson-Penston solution for 0, this will be the most serious known counterexample against cosmic censorship. It also provides strong evidence for the self-similarity hypothesis in general relativistic gravitational collapse. The direct consequence is that critical phenomena will be observed in the collapse of isothermal gas in Newton gravity, and the critical exponent Îł\gamma will be given by γ≈0.11\gamma\approx 0.11, though the order parameter cannot be the black hole mass.Comment: 22 pages, 15 figures, accepted for publication in Physical Review D, reference added, typos correcte
    • 

    corecore