18 research outputs found

    Applications of unmanned aerial vehicle (UAV) in road safety, traffic and highway infrastructure management: Recent advances and challenges

    Get PDF
    © 2020 For next-generation smart cities, small UAVs (also known as drones) are vital to incorporate in airspace for advancing the transportation systems. This paper presents a review of recent developments in relation to the application of UAVs in three major domains of transportation, namely; road safety, traffic monitoring and highway infrastructure management. Advances in computer vision algorithms to extract key features from UAV acquired videos and images are discussed along with the discussion on improvements made in traffic flow analysis methods, risk assessment and assistance in accident investigation and damage assessments for bridges and pavements. Additionally, barriers associated with the wide-scale deployment of UAVs technology are identified and countermeasures to overcome these barriers are discussed, along with their implications

    Automated Keratoconus Detection by 3D Corneal Images Reconstruction

    No full text
    This paper presents a technique for the detection of keratoconus via the construction of a 3D eye images from 2D frontal and lateral eye images. Keratoconus is a disease that affects the cornea. Normal case eyes have a round-shaped cornea, while patients who suffer from keratoconus have a cone-shaped cornea. Early diagnosis can decrease the risk of eyesight loss. Our aim is to create a method of fully automated keratoconus detection using digital-camera frontal and lateral eye images. The presented technique accurately determines case severity. Geometric features are extracted from 2D images to estimate depth information used to build 3D images of the cornea. The proposed methodology is easy to implement and time-efficient. 2D images of the eyes (frontal and lateral) are used as input, and 3D images from which the curvature of the cornea can be detected are produced as output. Our method involves two main steps: feature extraction and depth calculation. Machine learning from the 3D images dataset Dataverse, specifically taken by the Cornea/Anterior Segment OCT SS-1000 (CASIA), was performed. Results show that the method diagnosed the four stages of keratoconus (severe, moderate, mild, and normal) with an accuracy of 97.8%, as compared to manual diagnosis done by medical experts

    Machine Translation Utilizing the Frequent-Item Set Concept

    No full text
    In this paper, we introduce new concepts in the machine translation paradigm. We treat the corpus as a database of frequent word sets. A translation request triggers association rules joining phrases present in the source language, and phrases present in the target language. It has to be noted that a sequential scan of the corpus for such phrases will increase the response time in an unexpected manner. We introduce the pre-processing of the bilingual corpus through proposing a data structure called Corpus-Trie (CT) that renders a bilingual parallel corpus in a compact data structure representing frequent data items sets. We also present algorithms which utilize the CT to respond to translation requests and explore novel techniques in exhaustive experiments. Experiments were performed on specific language pairs, although the proposed method is not restricted to any specific language. Moreover, the proposed Corpus-Trie can be extended from bilingual corpora to accommodate multi-language corpora. Experiments indicated that the response time of a translation request is logarithmic to the count of unrepeated phrases in the original bilingual corpus (and thus, the Corpus-Trie size). In practical situations, 5–20% of the log of the number of the nodes have to be visited. The experimental results indicate that the BLEU score for the proposed CT system increases with the size of the number of phrases in the CT, for both English-Arabic and English-French translations. The proposed CT system was demonstrated to be better than both Omega-T and Apertium in quality of translation from a corpus size exceeding 1,600,000 phrases for English-Arabic translation, and 300,000 phrases for English-French translation

    Remote Sensing Imagery Data Analysis Using Marine Predators Algorithm with Deep Learning for Food Crop Classification

    No full text
    Recently, the usage of remote sensing (RS) data attained from unmanned aerial vehicles (UAV) or satellite imagery has become increasingly popular for crop classification processes, namely soil classification, crop mapping, or yield prediction. Food crop classification using RS images (RSI) is a significant application of RS technology in agriculture. It involves the use of satellite or aerial imagery to identify and classify different types of food crops grown in a specific area. This information can be valuable for crop monitoring, yield estimation, and land management. Meeting the criteria for analyzing these data requires increasingly sophisticated methods and artificial intelligence (AI) technologies provide the necessary support. Due to the heterogeneity and fragmentation of crop planting, typical classification approaches have a lower classification performance. However, the DL technique can detect and categorize crop types effectively and has a stronger feature extraction capability. In this aspect, this study designed a new remote sensing imagery data analysis using the marine predators algorithm with deep learning for food crop classification (RSMPA-DLFCC) technique. The RSMPA-DLFCC technique mainly investigates the RS data and determines the variety of food crops. In the RSMPA-DLFCC technique, the SimAM-EfficientNet model is utilized for the feature extraction process. The MPA is applied for the optimal hyperparameter selection process in order to optimize the accuracy of SimAM-EfficientNet architecture. MPA, inspired by the foraging behaviors of marine predators, perceptively explores hyperparameter configurations to optimize the hyperparameters, thereby improving the classification accuracy and generalization capabilities. For crop type detection and classification, an extreme learning machine (ELM) model can be used. The simulation analysis of the RSMPA-DLFCC technique is performed on two benchmark datasets. The extensive analysis of the results portrayed the higher performance of the RSMPA-DLFCC approach over existing DL techniques

    Modified Bald Eagle Search Algorithm With Deep Learning-Driven Sleep Quality Prediction for Healthcare Monitoring Systems

    No full text
    Sleep habits are strongly related to health behaviors, with sleep quality serving as a major health indicator. Current approaches for evaluating sleep quality, namely polysomnography and questionnaires, are often time-consuming, costly, or invasive. Thus, there is a pressing need for a more convenient, nonintrusive, and cost-effective method. The applications of deep learning (DL) in sleep quality prediction represent a groundbreaking technique for addressing sleep-related disorders. In this aspect, the article offers the design of a Modified Bald Eagle Search Algorithm with Deep Learning-Driven Sleep Quality Prediction (MBES-DLSQP) for Healthcare Monitoring Systems. The MBES-DLSQP technique combines the strengths of a DL model with a hyperparameter tuning strategy to provide precise sleep quality predictions. At the primary stage, the MBES-DLSQP technique undergoes data pre-processing. Besides, the MBES-DLSQP technique uses a stacked sparse autoencoder (SSAE)-based prediction model, which can extract and encode high-dimensional sleep data. The MBES-DLSQP incorporates MBESA-based hyperparameter tuning which assures its optimal configurations to further boost the efficiency of the SSAE model. The experimental outcome of the MBES-DLSQP algorithm is tested on the sleep dataset from the Kaggle repository. The experimental value infers that the MBES-DLSQP technique shows promising performance in sleep quality prediction with a maximum accuracy of 98.33%

    Exploiting Hyperspectral Imaging and Optimal Deep Learning for Crop Type Detection and Classification

    No full text
    Hyperspectral imaging (HSI) plays a major role in agricultural remote sensing applications. Its data unit is the hyperspectral cube that contains spatial data in 2D but spectral band data of all the pixels in 3D. The classification accuracy of HSI was significantly enhanced by deploying either spatial or spectral features. HSIs are developed as a significant approach to achieve growth data monitoring and distinguish crop classes for precision agriculture, based on the reasonable spectral response to the crop features. The latest developments in deep learning (DL) and computer vision (CV) approaches permit the effectual detection and classification of distinct crop varieties on HSIs. At the same time, the hyperparameter tuning process plays a vital role in accomplishing effectual classification performance. The study introduces a dandelion optimizer with deep transfer learning-based crop type detection and classification (DODTL-CTDC) technique on HSI. The DODTL-CTDC technique makes use of the Xception model for the extraction of features from the HSI. In addition, the hyperparameter selection of the Xception model takes place using the DO algorithm. Moreover, the convolutional autoencoder (CAE) model is applied for the classification of crops into distinct classes. Furthermore, an arithmetic optimization algorithm (AOA) can be employed for optimal hyperparameter selection of the CAE model. The performance analysis of the DODTL-CTDC technique is assessed on the benchmark data set. The experimental outcomes demonstrate the betterment of the DODTL-CTDC method in the crop classification process

    Land Use and Land Cover Classification Using River Formation Dynamics Algorithm With Deep Learning on Remote Sensing Images

    No full text
    Currently, remote sensing images (RSIs) are often exploited in the explanation of urban and rural areas, change recognition, and other domains. As the majority of RSI is high-resolution and contains wide and varied data, proper interpretation of RSIs is most important. Land use and land cover (LULC) classification utilizing deep learning (DL) is a common and efficient manner in remote sensing and geospatial study. It is very important in land planning, environmental monitoring, mapping, and land management. But, one of the recent approaches is problems like vulnerability to noise interference, low classification accuracy, and worse generalization ability. DL approaches, mostly Convolutional Neural Networks (CNNs) revealed impressive performance in image recognition tasks, making them appropriate for LULC classification in RSIs. Therefore, this study introduces a novel Land Use and Land Cover Classification employing the River Formation Dynamics Algorithm with Deep Learning (LULCC-RFDADL) technique on RSIs. The main objective of the LULCC-RFDADL methodology is to recognize the diverse types of LC on RSIs. In the presented LULCC-RFDADL technique, the dense EfficientNet approach is applied for feature extraction. Furthermore, the hyperparameter tuning of the Dense EfficientNet method was implemented using the RFDA technique. For the classification process, the LULCC-RFDADL technique uses the Multi-Scale Convolutional Autoencoder (MSCAE) model. At last, the seeker optimization algorithm (SOA) has been exploited for the parameter choice of the MSCAE system. The achieved outcomes of the LULCC-RFDADL algorithm were examined on benchmark databases. The simulation values show the better result of the LULCC-RFDADL methods with other approaches in terms of different metrics

    Metaheuristics Optimization with Deep Learning Enabled Automated Image Captioning System

    No full text
    Image captioning is a popular topic in the domains of computer vision and natural language processing (NLP). Recent advancements in deep learning (DL) models have enabled the improvement of the overall performance of the image captioning approach. This study develops a metaheuristic optimization with a deep learning-enabled automated image captioning technique (MODLE-AICT). The proposed MODLE-AICT model focuses on the generation of effective captions to the input images by using two processes involving encoding unit and decoding unit. Initially, at the encoding part, the salp swarm algorithm (SSA), with a HybridNet model, is utilized to generate effectual input image representation using fixed-length vectors, showing the novelty of the work. Moreover, the decoding part includes a bidirectional gated recurrent unit (BiGRU) model used to generate descriptive sentences. The inclusion of an SSA-based hyperparameter optimizer helps in attaining effectual performance. For inspecting the enhanced performance of the MODLE-AICT model, a series of simulations were carried out, and the results are examined under several aspects. The experimental values suggested the betterment of the MODLE-AICT model over recent approaches

    Smart Cities-Based Improving Atmospheric Particulate Matters Prediction Using Chi-Square Feature Selection Methods by Employing Machine Learning Techniques

    No full text
    Particulate matter is emitted from diverse sources and affect the human health very badly. Dust particles exposure from the stated environment can affect our heart and lungs very badly. The particle pollution exposure creates a variety of problems including nonfatal heart attacks, premature deaths in people with lung or heart disease, asthma, difficulty in breathing, etc. In this article, we developed an automated tool by computing multimodal features to capture the diverse dynamics of ambient particulate matter and then applied the Chi-square feature selection method to acquire the most relevant features. We also optimized parameters of robust machine learning algorithms to further improve the prediction performance such as Decision Tree, SVM with Linear and Regression, Naïve Bayes (NB), Random Forest (RF), Ensemble Classifier, K-Nearest Neighbor, and XGBoost for classification. The classification results with and without feature selection methods yielded the highest detection performance with random forest, and GBM yielded 100% of accuracy and AUC. The results revealed that the proposed methodology is more robust to provide an efficient system that will detect the particulate matters automatically and will help the individuals to improve their lifestyle and comfort. The concerned department can monitor the individual’s healthcare services and reduce the mortality ris

    Metaheuristics Optimization with Deep Learning Enabled Automated Image Captioning System

    No full text
    Image captioning is a popular topic in the domains of computer vision and natural language processing (NLP). Recent advancements in deep learning (DL) models have enabled the improvement of the overall performance of the image captioning approach. This study develops a metaheuristic optimization with a deep learning-enabled automated image captioning technique (MODLE-AICT). The proposed MODLE-AICT model focuses on the generation of effective captions to the input images by using two processes involving encoding unit and decoding unit. Initially, at the encoding part, the salp swarm algorithm (SSA), with a HybridNet model, is utilized to generate effectual input image representation using fixed-length vectors, showing the novelty of the work. Moreover, the decoding part includes a bidirectional gated recurrent unit (BiGRU) model used to generate descriptive sentences. The inclusion of an SSA-based hyperparameter optimizer helps in attaining effectual performance. For inspecting the enhanced performance of the MODLE-AICT model, a series of simulations were carried out, and the results are examined under several aspects. The experimental values suggested the betterment of the MODLE-AICT model over recent approaches
    corecore