12 research outputs found

    LIPID METABOLISM IN DIABETIC RATS AS AFFECTED BY CANOLA AND MUSTARD SEED SPROUTS

    Get PDF
    Canola (Brassica juncea L.) and mustard (Sinapis alba L.) seed sprout effects on diabetic rats  have no available information and to clarify their effects, both sprouts were investigated in streptozotocin (STZ) induced diabetic and normal rats. Rats were fed on a semi-modified diet containing 10% of canola or mustard sprouted using tap or saline water for sprouting ad-libitum for 6 weeks. STZ showed increases in blood sugar, low density lipoprotein cholesterol (LDL-c), vary low density lipoprotein cholesterol (VLDL-c) and triglycerides (TG). The addition of canola and mustard with or without salinty at 10% to diabetic rats diet as semimodified diet resulted a significant decrease in blood glucose, TG and VLDL-c and data was more pronounced using mustard sprouted or saline water without changes in the HDL-c   parameter. These results showed that canola and mustard especially mustard sprouted in saline water had a hypoglycemic activity in diabetic rats and partly improved lipid metabolism in the experimental rats, with non-toxic to rats in doses given  over 6 weeks period in this study

    Antimicrobial resistance genes in pathogenic Escherichia coli isolated from diseased broiler chickens in Egypt and their relationship with the phenotypic resistance characteristics Mohamed M. Amer, Hoda M. Mekky, Aziza M. Amer and Hanaa S. Fedawy

    Get PDF
    Aim: The aim of this study was to determine the relationship between phenotypic resistance and genotypic resistance of isolated serotyped pathogenic Escherichia coli isolates from the clinically diseased broiler. Materials and Methods: A total of 160 samples (heart, liver, kidney, and lung) were collected from 18 to 34 days old clinically diseased broiler from 40 broiler farms (3-5 birds/farm) reared in Giza and Kaluobaia Governorates for the isolation of pathogenic E. coli. Various E. coli isolates were tested for the pathogenicity based on Congo red (CR) dye binding assay. The obtained CR-positive E. coli isolates were subjected to serological identification using slide agglutination test. Disc diffusion test was used to study the sensitivity pattern of E. coli isolates to available 12 antibiotics. Polymerase chain reaction was performed for the detection of antimicrobial resistance genes in the studied pathogenic E. coli isolates. Results: The results revealed that 56 samples (35 %) were positive for E. coli. The results of the CR assay indicates that 20 isolates of 56 (35.7%) were positive and 36 isolates (64.3%) were negative. Identified E. coli serotypes of CR-positive isolates were 1 (O24), 2 (O44), 2 (O55), 5 (O78), 2 (O86), 1 (124), 3 (O127), 1 (O158), and 3 untyped. Resistance rate in disc diffusion test was 85% to oxytetracycline and kanamycin; 80% to ampicillin (AMP), clindamycin, and streptomycin (S); 75% to enrofloxacin; 65% to chloramphenicol; 55% to cefotaxime and gentamicin (CN); 45% to trimethoprim+sulfamethoxazole; 35% to erythromycin (ERI); and 30% to oxacillin. All strains are multidrug-resistant (MDR). Antibacterial resistance genes CITM, ere, aac (3)-(IV), tet(A), tet(B), dfr(A1), and aad(A1) were detected in 14 (70%), 12 (60%), 12 (60%), 8 (40%), 11 (55%), 8 (40%), and 9 (45%) of tested 20 isolates, respectively. Multidrug resistance was detected in the form of resistance to 42%-83.3% of tested 12 antibiotics. Three isolates (15%) of 20 tested isolates showed a relationship between phenotype and genotype and 17 (85%) showed irregular relation. Strains are sensitive and show resistant gene (P-G+) presented in three isolates for AMP (beta-lactam), one for ERI (Macrolide), as well as five isolates for trimethoprim (pyrimidine inhibitor). E. coli isolates had resistance and lacked gene (P+ G-) reported meanly in one isolate for CN (aminoglycoside), two isolates for tetracycline, four isolates for ERI, seven isolates for trimethoprim, and eight isolates for S (aminoglycoside). Conclusions: The study demonstrates that E. coli is still a major pathogen responsible for disease conditions in broiler. E. coli isolates are pathogenic and MDR. Responsible gene was detected for six antibiotics in most of the isolates, but some do not show gene expression, this may be due to few numbers of resistance genes tested or other resistance factors not included in this study

    Molecular identification of Mycoplasma synoviae from breeder chicken flock showing arthritis in Egypt

    Get PDF
    Aim: Arthritis is one of the most economic problems facing poultry industry worldwide. The study was done to detect possible causes of arthritis in breeder chicken flock with emphasis on molecular identification of Mycoplasma synoviae (MS). Materials and Methods: This study was carried on chicken from broiler breeder flock of 57 weeks' age in Dakahlia, Egypt, suffered from arthritis with frequently 5-7% decrease in egg production, reduced fertility, and hatchability. Forty blood samples were randomly collected from individual birds in sterile tubes and used for serum separation. Serum samples were tested using serum plate agglutination (SPA) test against colored antigens for Mycoplasma gallisepticum (MG), MS, and Salmonella gallinarum-pullorum (SGP). On the other hand, 24 joint samples were collected. Of those 24 samples, 12 joint samples were subjected to bacteriological examination, while the other 12 were utilized for molecular diagnosis by polymerase chain reaction (PCR) for MS and avian reovirus (ARV). Results: SPA test results revealed the presence of antibodies against MG, MS, and SGP in tested sera in rates of 14/40 (35%), 35/40 (87.5%), and 9/40 (22.5%), respectively. Furthermore, 19 bacterial isolates were recognized from joint samples and identified as five Staphylococcus spp., nine Escherichia coli, three SGP, one Citrobacter, and one Proteus. The identified Staphylococcal isolates were three coagulase-positive staphylococci (two Staphylococcus aureus and one Staphylococcus hyicus) and two coagulase-negative staphylococci (one Staphylococcus epidermidis and one Staphylococcus lentus), while E. coli isolate serotypes were 1 O11, 2 O55, 3 O78, 1 O124, 1 O125, and 1 untyped. PCR proved that 12/12 (100%) samples were positive for MS variable lipoprotein hemagglutinin A (vlhA) gene, while ARV was not diagnosed in any of the examined samples. Four amplified vlhA gene of MS isolates (named MS-2018D1, MS-2018D2, MS-2018D3, and MS-2018D4) was successfully sequenced. Analysis of phylogenetic tree revealed the presence of 100% identity between each two sequenced isolates (isolates MS-2018D1 and MS-2018D4 and also isolates 2018D2 and MS-2018D3). However, the nucleotide similarity between four isolates was 88.6%. On the other hand, our field isolates MS-2018D1, MS-2018D4, MS-2018D2, and MS-2018D3 showed nucleotide identity with vaccine strain MS-H 98.4%, 98.4%, 88.1%, and 88.1%, respectively. Furthermore, the nucleotide similarities with field strains from Argentina ranged between 87.8% and 98.6%. Conclusion: Four field isolates of MS were identified in examined broiler breeder flock. A phylogenetic study of these isolates revealed the variation between isolated MS strains and vaccine strain. Therefore, further studies are required for evaluating the vaccine efficacy against the present field isolates of MS. In addition, application of MS immunization of breeder flocks is necessary for proper control of the disease

    LIPID METABOLISM IN DIABETIC RATS AS AFFECTED BY CANOLA AND MUSTARD SEED SPROUTS

    No full text
    Canola (Brassica juncea L.) and mustard (Sinapis alba L.) seed sprout effects on diabetic rats  have no available information and to clarify their effects, both sprouts were investigated in streptozotocin (STZ) induced diabetic and normal rats. Rats were fed on a semi-modified diet containing 10% of canola or mustard sprouted using tap or saline water for sprouting ad-libitum for 6 weeks. STZ showed increases in blood sugar, low density lipoprotein cholesterol (LDL-c), vary low density lipoprotein cholesterol (VLDL-c) and triglycerides (TG). The addition of canola and mustard with or without salinty at 10% to diabetic rats diet as semimodified diet resulted a significant decrease in blood glucose, TG and VLDL-c and data was more pronounced using mustard sprouted or saline water without changes in the HDL-c   parameter. These results showed that canola and mustard especially mustard sprouted in saline water had a hypoglycemic activity in diabetic rats and partly improved lipid metabolism in the experimental rats, with non-toxic to rats in doses given  over 6 weeks period in this study

    Molecular identification, genotyping of virulence-associated genes, and pathogenicity of cellulitis-derived Escherichia coli

    Get PDF
    Background and Aim: Avian colibacillosis, which is caused by avian pathogenic Escherichia coli (APEC), is a major bacterial disease that affects birds of all ages worldwide, causing significant economic losses. APEC manifests in several clinical forms, including cellulitis, and its high pathogenicity is attributed to harboring numerous virulence-associated genes (VGs). This study evaluated the pathogenicity of the cellulitis-derived E. coli (O78) strain through molecular identification of genes coding for seven virulence factors and by conducting an in vivo assessment of capability for cellulitis induction in broiler chickens. Materials and Methods: This study was performed using a previously isolated and identified cellulitis-derived E. coli (O78), which was screened for seven VGs using molecular detection and identification through polymerase chain reaction followed by nucleotide sequencing and phylogenetic analysis. Experimental infection by subcutaneous (SC) inoculation in broilers and its pathogenicity was confirmed in vivo by cellulitis induction. The impact of cellulitis on broiler performance was assessed. Results: Molecular genotyping proved that the isolate harbored five virulence genes (iroN, iutA, tsh, iss, and papC) and was negative for stx1 and hly genes. The amplified products for iroN, iss, and iutA were subjected to sequencing and phylogenetic analysis, and the results indicate the highest similarity and matching with E. coli submitted to the National Center for Biotechnology Information GenBank. SC inoculation of bacteria in broiler chickens resulted in cellulitis, as indicated by thick red edematous skin with yellowish-white material in the SC tissue at the inoculation site, and the abdominal muscle showed redness and increased vacuolization. Histopathological examination revealed moderate-to-severe caseous inflammatory reaction with a marked accumulation of heterophils and mononuclear cells in the SC fatty tissue. The average feed intake, body weight gain (BWG), and feed conversion ratio (FCR) were lower in infected chickens in comparison with those of the control non-infected chickens. Conclusion: This study proves that molecular techniques are accurate for pathogenicity determination in virulent bacteria, with the advantages of being rapid, time-saving, and economical. Cellulitis is associated with economic losses that are represented by a lower BWG and FCR

    Removal of cadmium from aqueous solution using marine green algae, Ulva lactuca

    Get PDF
    The present study aimed to evaluate the efficiency of marine algae for removal of metals from the aqueous solution. The green alga, Ulva lactuca, collected from the intertidal zone of the Suez Bay, northern part of the Red Sea was used to reduce cadmium levels from the aqueous solutions. The biosorption mechanisms of Cd2+ ions onto the algal tissues were examined using various analytical techniques: Fourier-transform infrared spectroscopy (FT-IR) and Scanning electron microscopy (SEM). Results indicated that at the optimum pH value of 5.5; about 0.1 g of U. lactuca was enough to remove 99.2% of 10 mg L−1 Cd2+ at 30 °C in the aqueous solutions. The equilibrium data were well fitted with the Langmuir and Freundlich isotherms. The monolayer adsorption capacity was 29.1 mg g−1. The calculated RL and ‘n’ values have proved the favorability of cadmium adsorption onto U. lactuca. The desorption test revealed that HCl was the best for the elution of metals from the tested alga. In conclusion, the seaweed U. lactuca was the favorable alternative of cadmium removal from water

    Impact of Salting Techniques on the Physio-Chemical Characteristics, Sensory Properties, and Volatile Organic Compounds of Ras Cheese

    No full text
    Ras cheese is the main Egyptian hard cheese that is well-known worldwide. Herein, we investigated how different salting techniques affect the physio-chemical properties, sensory properties, and volatile compounds of Ras cheese over a six-month ripening period. Five Ras cheese treatments were made from pasteurized cow’s milk using various salting techniques: traditional salting of Ras cheese, salting by applying all of the salt to the curd after the entire whey drainage, salting by applying all of the salt to the curd after half to two-thirds of the whey drainage, salting in a brine solution for 24 h without dry salting, and salting in a brine solution for 12 h and then dry salting. The obtained results by GC-MS recorded that thirty-eight volatile compounds were identified in Ras cheese treatments after six months of ripening, and the development of volatile compounds was affected by the salting technique as well as the ripening period of the cheeses, which played a major role in the type and concentration of volatile compounds. Results revealed that there are six esters, 15 fatty acids, five ketones, two aldehydes, four alcohols, and eight other compounds identified in most treatments. Some physio-chemical characteristics and sensory properties were found to have high correlations with the storage period, while some others have low correlations during the ripening period

    Competitive adsorption of Alizarin Red S and Bromocresol Green from aqueous solutions using brookite TiO2 nanoparticles: experimental and molecular dynamics simulation

    No full text
    In this work, the effective adsorption and the subsequent photodegradation activity, of TiO2 brookite nanoparticles, for the removal of anionic dyes, namely, Alizarin Red S (ARS) and Bromocresol Green (BCG) were studied. Batch adsorption experiments were conducted to investigate the effect of both dyes' concentration, contact time, and temperature. Photodegradation experiments for the adsorbed dyes were achieved using ultraviolet light illumination (6 W, λ = 365 nm). The single adsorption isotherms were fitted to the Sips model. The binary adsorption isotherms were fitted using the Extended-Sips model. The results of adsorption isotherms showed that the estimated maximum adsorption uptakes in the binary system were around 140 mg g-1 and 45.5 mg g-1 for ARS and BCG, respectively. In terms of adsorption kinetics, the uptake toward ARS was faster than BCG molecules in which the equilibrium was obtained in 7 min for ARS, while it took 180 min for BCG. Moreover, the thermodynamics results showed that the adsorption process was spontaneous for both anionic dyes. All these macroscopic competitive adsorption results indicate high selectivity toward ARS molecules in the presence of BCG molecules. Additionally, the TiO2 nanoparticles were successfully regenerated using UV irradiation. Moreover, molecular dynamics computational modeling was performed to understand the molecules' optimum coordination, TiO2 geometry, adsorption selectivity, and binary solution adsorption energies. The simulation energies distribution exhibits lower adsorption energies for ARS in the range from - 628 to - 1046 [Formula: see text] for both single and binary systems. In addition to that, the water adsorption energy was found to be between - 42 and - 209 [Formula: see text]
    corecore