3 research outputs found

    Pitfalls of commercially available HPV tests in HPV68a detection.

    No full text
    BackgroundHuman papillomavirus 68 (HPV68) is a probable carcinogenic HPV genotype which is included in almost all HPV screening assays and exists as two genetically variable subtypes (HPV68a and HPV68b). Routine HPV sample testing has shown that the cobas 4800 HPV Test (Roche) provides higher false-negative rates for HPV68 status than PapilloCheck HPV-Screening (Greiner Bio-One). The aim of our study was to evaluate the efficacy of cobas 4800 in HPV68 detection.MethodsA total of 2,145 cervical/cervicovaginal samples from women aged 17-88 were tested for HPV68 status using the cobas 4800 and PapilloCheck HPV tests. Viral load was assessed by quantitative PCR in all of the HPV68-positive cases. HPV68a/b subtyping was performed with real-time PCR followed by high resolution melting curve analysis, and was subsequently confirmed by Sanger sequencing.ResultsCobas 4800 detected HPV positivity in only 13/33 HPV68 single-genotype infection cases. Viral load was comparable across both tested subgroups. HRM analysis and Sanger sequencing identified the HPV68a subtype in all of the 20 instances of cobas 4800 false negatives. HPV68a and HPV68b were detected in 3/13 and 10/13 cases identified as other HPV-positive by cobas 4800.ConclusionThe HPV68a subtype was missed by cobas 4800 in more than 85% of all HPV68a-positive cases. Therefore, commercially available assays may underestimate HPV68 prevalence

    Evaluation of Non-Invasive Gargle Lavage Sampling for the Detection of SARS-CoV-2 Using rRT-PCR or Antigen Assay

    No full text
    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused considerable disruption worldwide. For efficient SARS-CoV-2 detection, new methods of rapid, non-invasive sampling are needed. This study aimed to investigate the stability of SARS-CoV-2 in a novel medium for gargle-lavage (GL) self-sampling and to compare the performance of SARS-CoV-2 detection in paired self-collected GL and clinician-obtained nasopharyngeal swab (NPS) samples. The stability study for SARS-CoV-2 preservation in a novel medium was performed over 14 days (4 °C, 24–27 °C, and 37 °C). In total, 494 paired GL and NPS samples were obtained at the University Hospital in Olomouc in April 2021. SARS-CoV-2 detection in paired samples was performed with a SARS-CoV-2 Nucleic Acid Detection Kit (Zybio, Chongqing Municipality, Chongqing, China), an Elecsys® SARS-CoV-2 Antigen assay (Roche Diagnostics, Mannheim, Germany), and a SARS-CoV-2 Antigen ELISA (EUROIMMUN, Lübeck, Germany). The stability study demonstrated excellent SARS-CoV-2 preservation in the novel medium for 14 days. SARS-CoV-2 was detected in 55.7% of NPS samples and 55.7% of GL samples using rRT-PCR, with an overall agreement of 91.9%. The positive percent agreement (PPA) of the rRT-PCR in the GL samples was 92.7%, and the negative percent agreement (NPA) was 90.9%, compared with the NPS samples. The PPA of the rRT-PCR in the NPS and GL samples was 93.2% when all positive tests were used as the reference standard. Both antigen detection assays showed poor sensitivity compared to rRT-PCR (33.2% and 36.0%). rRT-PCR SARS-CoV-2 detection in self-collected GL samples had a similar PPA and NPA to that of NPSs. GL self-sampling offers a suitable and more comfortable alternative for SARS-CoV-2 detection
    corecore