5,007 research outputs found

    Measurement-device-independent QKD with Modified Coherent State

    Full text link
    The measurement-device-independent quantum key distribution (MDI-QKD) protocol has been proposed for the purpose of removing the detector side channel attacks. Due to the multi-photon events of coherent states sources, real-life implementations of MDI-QKD protocol must employ decoy states to beat the photon-number-splitting attack. Decoy states for MDI-QKD based on the weak coherent states have been studied recently. In this paper, we propose to perform MDI-QKD protocol with modified coherent states (MCS) sources. We simulate the performance of MDI-QKD with the decoy states based on MCS sources. And our simulation indicates that both the secure-key rate and transmission distance can be improved evidently with MCS sources.The physics behind this improvement is that the probability of multi-photon events of the MCS is lower than that of weak coherent states while at the same time the probability of single-photon is higher

    Analysis of Laser ARPES from Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta} in superconductive state: angle resolved self-energy and fluctuation spectrum

    Full text link
    We analyze the ultra high resolution laser angle resolved photo-emission spectroscopy (ARPES) intensity from the slightly underdoped Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta} in the superconductive (SC) state. The momentum distribution curves (MDC) were fitted at each energy \w employing the SC Green's function along several cuts perpendicular to the Fermi surface with the tilt angle θ\theta with respect to the nodal cut. The clear observation of particle-hole mixing was utilized such that the complex self-energy as a function of ω\omega is directly obtained from the fitting. The obtained angle resolved self-energy is then used to deduce the Eliashberg function \alpha^2 F^{(+)}(\th,\w) in the diagonal channel by inverting the d-wave Eliashberg equation using the maximum entropy method. Besides a broad featureless spectrum up to the cutoff energy ωc\omega_c, the deduced α2F\alpha^2 F exhibits two peaks around 0.05 eV and 0.015 eV. The former and the broad feature are already present in the normal state, while the latter emerges only below TcT_c. Both peaks become enhanced as TT is lowered or the angle th\th moves away from the nodal direction. The implication of these findings are discussed.Comment: 7 pages, 5 figures, summited to PR

    Stabilizing sample-wide Kekul\'e orders in graphene/transition metal dichalcogenide heterostructures

    Full text link
    Kekul\'e phases are Peierls-like lattice distortions in graphene that are predicted to host novel electronic states beyond graphene (1-8). Although the Kekul\'e phases are realized in graphene through introducing electron-electron interactions at high magnetic fields (9-11) or adatom superlattices (12-15), it is still an extremely challenge to obtain large-area graphene Kekul\'e phases in experiment. Here we demonstrate that sample-wide Kekul\'e distortions in graphene can be stabilized by using transition metal dichalcogenides (TMDs) as substrates and the induced Kekul\'e orders are quite robust in the whole graphene/TMDs heterostructures with different twist angles. The commensurate structures of the heterostructures provide periodic scattering centers that break the translational symmetry of graphene and couple electrons of the two valleys in graphene, which tips the graphene toward global Kekul\'e density wave phases. Unexpectedly, three distinct Kekul\'e bond textures stabilized at various energies are directly imaged in every graphene/TMDs heterostructure. Our results reveal an unexpected sensitivity of electronic properties in graphene to the supporting substrates and provide an attractive route toward designing novel phases in graphene/TMDs heterostructures
    corecore