8,244 research outputs found

    Power vs. Spectrum 2-D Sensing in Energy Harvesting Cognitive Radio Networks

    Full text link
    Energy harvester based cognitive radio is a promising solution to address the shortage of both spectrum and energy. Since the spectrum access and power consumption patterns are interdependent, and the power value harvested from certain environmental sources are spatially correlated, the new power dimension could provide additional information to enhance the spectrum sensing accuracy. In this paper, the Markovian behavior of the primary users is considered, based on which we adopt a hidden input Markov model to specify the primary vs. secondary dynamics in the system. Accordingly, we propose a 2-D spectrum and power (harvested) sensing scheme to improve the primary user detection performance, which is also capable of estimating the primary transmit power level. Theoretical and simulated results demonstrate the effectiveness of the proposed scheme, in term of the performance gain achieved by considering the new power dimension. To the best of our knowledge, this is the first work to jointly consider the spectrum and power dimensions for the cognitive primary user detection problem

    Multiparty quantum secret splitting and quantum state sharing

    Full text link
    A protocol for multiparty quantum secret splitting is proposed with an ordered NN EPR pairs and Bell state measurements. It is secure and has the high intrinsic efficiency and source capacity as almost all the instances are useful and each EPR pair carries two bits of message securely. Moreover, we modify it for multiparty quantum state sharing of an arbitrary mm-particle entangled state based on quantum teleportation with only Bell state measurements and local unitary operations which make this protocol more convenient in a practical application than others.Comment: 7 pages, 1 figure. The revision of the manuscript appeared in PLA. Some procedures for detecting cheat have been added. Then the security loophole in the original manuscript has been eliminate

    Quantum logical gates with four-level SQUIDs coupled to a superconducting resonator

    Full text link
    We propose a way for realizing a two-qubit controlled phase gate with superconducting quantum interference devices (SQUIDs) coupled to a superconducting resonator. In this proposal, the two lowest levels of each SQUID serve as the logical states and two intermediate levels of each SQUID are used for the gate realization. We show that neither adjustment of SQUID level spacings during the gate operation nor uniformity in SQUID parameters is required by this proposal. In addition, this proposal does not require the adiabatic passage or a second-order detuning and thus the gate is much faster.Comment: 6 pages, 3 figure
    • …
    corecore