24,272 research outputs found
Secure Pick Up: Implicit Authentication When You Start Using the Smartphone
We propose Secure Pick Up (SPU), a convenient, lightweight, in-device,
non-intrusive and automatic-learning system for smartphone user authentication.
Operating in the background, our system implicitly observes users' phone
pick-up movements, the way they bend their arms when they pick up a smartphone
to interact with the device, to authenticate the users.
Our SPU outperforms the state-of-the-art implicit authentication mechanisms
in three main aspects: 1) SPU automatically learns the user's behavioral
pattern without requiring a large amount of training data (especially those of
other users) as previous methods did, making it more deployable. Towards this
end, we propose a weighted multi-dimensional Dynamic Time Warping (DTW)
algorithm to effectively quantify similarities between users' pick-up
movements; 2) SPU does not rely on a remote server for providing further
computational power, making SPU efficient and usable even without network
access; and 3) our system can adaptively update a user's authentication model
to accommodate user's behavioral drift over time with negligible overhead.
Through extensive experiments on real world datasets, we demonstrate that SPU
can achieve authentication accuracy up to 96.3% with a very low latency of 2.4
milliseconds. It reduces the number of times a user has to do explicit
authentication by 32.9%, while effectively defending against various attacks.Comment: Published on ACM Symposium on Access Control Models and Technologies
(SACMAT) 201
Development of an ex vivo model for the study of cerebrovascular function utilizing isolated mouse olfactory artery
OBJECTIVE: Cerebral vessels, such as intracerebral perforating arterioles isolated from rat brain, have been widely used as an ex vivo model to study the cerebrovascular function associated with cerebrovascular disorders and the therapeutic effects of various pharmacological agents. These perforating arterioles, however, have demonstrated differences in the vascular architecture and reactivity compared with a larger leptomeningeal artery which has been commonly implicated in cerebrovascular disease. In this study, therefore, we developed the method for studying cerebrovascular function utilizing the olfactory artery isolated from the mouse brain. METHODS: The olfactory artery (OA) was isolated from the C57/BL6 wild-type mouse brain. After removing connective tissues, one side of the isolated vessel segment (approximately -500 µm in length) was cannulated and the opposite end of the vessel was completely sealed while being viewed with an inverted microscope. After verifying the absence of pressure leakage, we examined the vascular reactivity to various vasoactive agents under the fixed intravascular pressure (60 mm Hg). RESULTS: We found that the isolated mouse OAs were able to constrict in response to vasoconstrictors, including KCl, phenylephrine, endothelin-1, and prostaglandin PGH(2). Moreover, this isolated vessel demonstrated vasodilation in a dose-dependent manner when vasodilatory agents, acetylcholine and bradykinin, were applied. CONCLUSION: Our findings suggest that the isolated olfactory artery would provide as a useful ex vivo model to study the molecular and cellular mechanisms of vascular function underlying cerebrovascular disorders and the direct effects of such disease-modifying pathways on cerebrovascular function utilizing pharmacological agents and genetically modified mouse models
- …