1,319 research outputs found

    Gravitational waves from cosmic bubble collisions

    Full text link
    Cosmic bubbles are nucleated through the quantum tunneling process. After nucleation they would expand and undergo collisions with each other. In this paper, we focus in particular on collisions of two equal-sized bubbles and compute gravitational waves emitted from the collisions. First, we study the mechanism of the collisions by means of a real scalar field and its quartic potential. Then, using this model, we compute gravitational waves from the collisions in a straightforward manner. In the quadrupole approximation, time-domain gravitational waveforms are directly obtained by integrating the energy-momentum tensors over the volume of the wave sources, where the energy-momentum tensors are expressed in terms of the scalar field, the local geometry and the potential. We present gravitational waveforms emitted during (i) the initial-to-intermediate stage of strong collisions and (ii) the final stage of weak collisions: the former is obtained numerically, in \textit{full General Relativity} and the latter analytically, in the flat spacetime approximation. We gain qualitative insights into the time-domain gravitational waveforms from bubble collisions: during (i), the waveforms show the non-linearity of the collisions, characterized by a modulating frequency and cusp-like bumps, whereas during (ii), the waveforms exhibit the linearity of the collisions, featured by smooth monochromatic oscillations.Comment: 17 pages, 5 figure

    Nucleation and evolution of false vacuum bubbles in scalar-tensor gravity

    Get PDF
    In this presentation, we discuss the nucleation and subsequent evolution of false vacuum bubbles in the scalar-tensor gravity. First, we transform the scalar-tensor type theory of gravity to the standard Brans-Dicke type. Second, we transform the Brans-Dicke type theory from the Jordan frame to the Einstein frame. For a certain potential, a true vacuum bubble in the Einstein frame can be transformed in to a false vacuum bubble in the Jordan frame by a conformal transformation. Thus, in the Jordan frame, the nucleation of a false vacuum bubble can be possible and its subsequent evolution can be described with the help of thin-wall approximation. False vacuum bubbles have physical importance: a set of false vacuum bubbles might generate a negative energy bath and it has further theoretical implications
    • …
    corecore