1,221 research outputs found
Isolation and characterization of differentially expressed genes in the mycelium and fruit body of Pleurotus ostreatus
The fruiting body of one of the most widely cultivated mushrooms, the oyster mushroom (Pleurotus ostreatus) is highly interesting, both commercially and scientifically. In the present study, we performed comparative proteomic profiling of P. ostreatus at two unique developmental stages; mycelium and fruit body, using two-dimensional gel electrophoresis (2-DE). Seven hundred fourteen (714) spots were detected and 29 spots (showing a high level of difference in their expressions) were identified by tandem mass spectrometry and basic local alignment search tool (BLAST) searching of an expressed sequence tag (EST) database of P. ostreatus. Among them, six proteins (putative fatty acid oxygenase, heat shock sks2, PriA homologue, Ap-1 like transcription factor YAP7, mung bean seed albumin, and C2H2 Zinc finger domain protein) and one protein (peroxisomal biogenesis factor 6) showed increased expression levels at the fruiting process and the mycelial stage, respectively. Through reverse transcriptase-polymerase chain reaction analysis, priA homologue and AP-1 like transcription factor yap7 showed gradually increased expression from mycelia to fruit body, whereas putative fatty acid oxygenase and heat shock protein sks2 were expressed only in the fruit body. These results provide useful information for future studies of mushroom development of P. ostreatus.Keywords: Developmental stage, mushroom fruiting, Pleurotus ostreatus, protein, two-dimensional gel electrophoresisAfrican Journal of Biotechnology Vol. 12(24), pp. 3790-379
Partial Trisomy 1q41 Syndrome Delineated by Whole Genomic Array Comparative Genome Hybridization
Partial trisomy 1q syndrome is a rare chromosomal abnormality. We report on a male infant with 46,XY,der(11)t(1;11)(q41;p15.5) due to unbalanced segregation of the maternal reciprocal balanced translocation 46,XX,t(1;11)(q41;p15.5). The baby presented with a mild phenotype, characterized by a triangular face, almond-shaped eyes, low ears, short stature with relatively long legs, and mild psychomotor retardation. We utilized whole genomic array comparative genome hybridization (CGH) with 4,000 selected bacterial artificial chromosomes (BACs) to define the chromosomal breakpoints and to delineate the extent of the partial trisomy in more detail. To our knowledge, this is the first case of nearly pure "partial trisomy 1q41" defined by whole genomic array CGH
pncA mutations in clinical Mycobacterium tuberculosis isolates from Korea
BACKGROUND: Pyrazinamide (PZA) is among the first-line drugs for the treatment of tuberculosis. In vitro, it kills semidormant mycobacteria only at low pH. The purpose of this study was to compare PZA resistance with pyrazinamidase (PZase) activity and the genotype to better understand the molecular basis of PZA resistance and to expand the profile of pncA mutations worldwide. RESULTS: Of the 28 tested strains of Mycobacterium tuberculosis, 6 were susceptible to PZA and positive for PZase activity and had no pncA mutations. Twenty-one strains were resistant to PZA and negative for PZase activity and had mutations in the pncA gene, including 15 point mutations, 5 insertions, and 2 deletions. One strain had no mutation in the pncA gene, even though it was resistant to PZA and negative for PZase activity. Three isolates had adenine to guanine point mutations in the -11 upstream region, making this the most common type of pncA mutations in this study, with at least two different RFLP patterns. CONCLUSION: These data help in the understanding of the molecular basis of PZA resistance. An adenine to guanine point mutation in the -11 upstream region was the most common type of pncA mutation in our isolates. The results of pncA mutation analyses should be carefully interpreted for epidemiologic purposes
Gene mapping study for constitutive skin color in an isolated Mongolian population
To elucidate the genes responsible for constitutive human skin color, we measured the extent of skin pigmentation in the buttock, representative of lifelong non-sun-exposed skin, and conducted a gene mapping study on skin color in an isolated Mongolian population composed of 344 individuals from 59 families who lived in Dashbalbar, Mongolia. The heritability of constitutive skin color was 0.82, indicating significant genetic association on this trait. Through the linkage analysis using 1,039 short tandem repeat (STR) microsatellite markers, we identified a novel genomic region regulating constitutive skin color on 11q24.2 with an logarithm of odds (LOD) score of 3.39. In addition, we also found other candidate regions on 17q23.2, 6q25.1, and 13q33.2 (LOD ≥ 2). Family-based association tests on these regions with suggestive linkage peaks revealed ten and two significant single nucleotide polymorphisms (SNPs) on the linkage regions of chromosome 11 and 17, respectively. We were able to discover four possible candidate genes that would be implicated to regulate human skin color: ETS1, UBASH3B, ASAM, and CLTC
Nogo-A regulates myogenesis via interacting with Filamin-C
Among the three isoforms encoded by Rtn4, Nogo-A has been intensely investigated as a central nervous system inhibitor. Although Nogo-A expression is increased in muscles of patients with amyotrophic lateral sclerosis, its role in muscle homeostasis and regeneration is not well elucidated. In this study, we discovered a significant increase in Nogo-A expression in various muscle-related pathological conditions. Nogo−/− mice displayed dystrophic muscle structure, dysregulated muscle regeneration following injury, and altered gene expression involving lipid storage and muscle cell differentiation. We hypothesized that increased Nogo-A levels might regulate muscle regeneration. Differentiating myoblasts exhibited Nogo-A upregulation and silencing Nogo-A abrogated myoblast differentiation. Nogo-A interacted with filamin-C, suggesting a role for Nogo-A in cytoskeletal arrangement during myogenesis. In conclusion, Nogo-A maintains muscle homeostasis and integrity, and pathologically altered Nogo-A expression mediates muscle regeneration, suggesting Nogo-A as a novel target for the treatment of myopathies in clinical settings. © 2021, The Author(s).1
Epigenomic analysis of aberrantly methylated genes in colorectal cancer identifies genes commonly affected by epigenetic alterations.
Methylation profiling based on bead-chip arrays is an effective method for screening aberrantly methylated genes in CRC. In addition, we identified novel methylated genes that are candidate diagnostic or prognostic markers for CRC
- …