35,978 research outputs found

    Robust globally divergence-free weak Galerkin finite element methods for natural convection problems

    Get PDF
    This paper proposes and analyzes a class of weak Galerkin (WG) finite element methods for stationary natural convection problems in two and three dimensions. We use piecewise polynomials of degrees k, k-1, and k(k>=1) for the velocity, pressure, and temperature approximations in the interior of elements, respectively, and piecewise polynomials of degrees l, k, l(l = k-1,k) for the numerical traces of velocity, pressure and temperature on the interfaces of elements. The methods yield globally divergence-free velocity solutions. Well-posedness of the discrete scheme is established, optimal a priori error estimates are derived, and an unconditionally convergent iteration algorithm is presented. Numerical experiments confirm the theoretical results and show the robustness of the methods with respect to Rayleigh number.Comment: 32 pages, 13 figure

    Fracton topological order via coupled layers

    Get PDF
    In this work, we develop a coupled layer construction of fracton topological orders in d=3d=3 spatial dimensions. These topological phases have sub-extensive topological ground-state degeneracy and possess excitations whose movement is restricted in interesting ways. Our coupled layer approach is used to construct several different fracton topological phases, both from stacked layers of simple d=2d=2 topological phases and from stacks of d=3d=3 fracton topological phases. This perspective allows us to shed light on the physics of the X-cube model recently introduced by Vijay, Haah, and Fu, which we demonstrate can be obtained as the strong-coupling limit of a coupled three-dimensional stack of toric codes. We also construct two new models of fracton topological order: a semionic generalization of the X-cube model, and a model obtained by coupling together four interpenetrating X-cube models, which we dub the "Four Color Cube model." The couplings considered lead to fracton topological orders via mechanisms we dub "p-string condensation" and "p-membrane condensation," in which strings or membranes built from particle excitations are driven to condense. This allows the fusion properties, braiding statistics, and ground-state degeneracy of the phases we construct to be easily studied in terms of more familiar degrees of freedom. Our work raises the possibility of studying fracton topological phases from within the framework of topological quantum field theory, which may be useful for obtaining a more complete understanding of such phases.Comment: 20 pages, 18 figures, published versio
    • …
    corecore