35 research outputs found

    Precise Localization and Formation Control of Swarm Robots via Wireless Sensor Networks

    Get PDF
    Precise localization and formation control are one of the key technologies to achieve coordination and control of swarm robots, which is also currently a bottleneck for practical applications of swarm robotic systems. Aiming at overcoming the limited individual perception and the difficulty of achieving precise localization and formation, a localization approach combining dead reckoning (DR) with wireless sensor network- (WSN-) based methods is proposed in this paper. Two kinds of WSN localization technologies are adopted in this paper, that is, ZigBee-based RSSI (received signal strength indication) global localization and electronic tag floors for calibration of local positioning. First, the DR localization information is combined with the ZigBee-based RSSI position information using the Kalman filter method to achieve precise global localization and maintain the robot formation. Then the electronic tag floors provide the robots with their precise coordinates in some local areas and enable the robot swarm to calibrate its formation by reducing the accumulated position errors. Hence, the overall performance of localization and formation control of the swarm robotic system is improved. Both of the simulation results and the experimental results on a real schematic system are given to demonstrate the success of the proposed approach

    ONCache: A Cache-Based Low-Overhead Container Overlay Network

    Full text link
    Recent years have witnessed a widespread adoption of containers. While containers simplify and accelerate application development, existing container network technologies either incur significant overhead, which hurts performance for distributed applications, or lose flexibility or compatibility, which hinders the widespread deployment in production. We design and implement ONCache (\textbf{O}verlay \textbf{N}etwork \textbf{Cache}), a cache-based container overlay network, to eliminate the overhead while keeping flexibility and compatibility. We carefully analyze the difference between an overlay network and a host network, and find that an overlay network incurs extra packet processing, including encapsulating, intra-host routing, namespace traversing and packet filtering. Fortunately, the extra processing exhibits an \emph{invariance property}, e.g., most packets of the same flow have the same processing results. This property motivates us to cache the extra processing results. With the proposed cache, ONCache significantly reduces the extra overhead while maintaining the same flexibility and compatibility as standard overlay networks. We implement ONCache using eBPF with only 524 lines of code, and deploy ONCache as a plugin of Antrea. With ONCache, container communication achieves similar performance as host communication. Compared to the standard overlay network, ONCache improves the throughput and request-response transaction rate by 12\% and 36\% for TCP (20\% and 34\% for UDP), while significant reduces per-packet CPU overhead. Many distributed applications also benefit from ONCache

    Isolation and characterization of the mink interferon-epsilon gene and its antiviral activity

    Get PDF
    The interferon (IFN) response is the first line of defense against viral invasion and thus plays a central role in the regulation of the immune response. IFN-epsilon (IFN-ε) is a newly discovered type I IFN that does not require viral induction, unlike other type I IFNs. IFN-ε is constitutively expressed in epithelial cells and plays an important role in mucosal immunity. In this study, we evaluated the biological activity of the mink-IFN (MiIFN)-ε gene in prokaryotic cells. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was used to evaluate IFN-ε expression in different mink tissues. MiIFN-ε was highly expressed in brain, lung, tracheal, kidney, intestinal, bladder, ovarian, and testis tissues. There was no significant difference in MiIFN-ε expression between female and male minks, except in the reproductive system. Expression of the small ubiquitin-like modifier (SUMO3)-MiIFN-ε fusion gene was induced by isopropylβ-d-thiogalactoside, and MiIFN-ε was collected after SUMO-specific protease digestion. We tested the antiviral activity of MiIFN-ε against vesicular stomatitis virus (VSV) in epithelial cells of feline kidney 81 (F81). We used qRT-PCR to analyze the expression of several IFN-stimulated genes (ISGs), including ISG15, 2′-5′ oligoadenylate synthetase (2′-5′OAS1), and myxovirus resistance protein 1 (Mx1). Recombinant IFN-ε induced high ISG expression in F81 cells. Compared with those in the cell control group, expressions of ISG15, Mx1, and 2′-5′ OAS1 in the VSV-GFP control, IFN-ε, and MiIFN-ε-inhibited VSV-GFP groups were significantly increased. Compared with those in the VSV-GFP control group, expressions of ISG15 and 2′-5′ OAS1 in the IFN-ε and MiIFN-ε-inhibited VSV-GFP groups were significantly increased, and the differences were highly significant (p < 0.0001). IFN-ε played an indirect antiviral role. These findings lay the foundation for detailed investigation of IFN-ε in the future

    Simulation analysis on hybrid energy storage management strategy in warship medium voltage DC power system

    No full text
    [Objectives] In order to suppress the occurrence of a massive bus voltage drop caused by a large-power pulsed load entering the Medium Voltage Direct Current (MVDC) power system of the ship and to maintain the bus voltage within the required safety margin, the Hybrid Energy Storage System (HESS) is a promising solution to this problem. However, the hybrid energy management strategy of the ship MVDC system can greatly affect the energy efficiency of the system.[Methods] Therefore, the PI controller and fuzzy logic controller are designed to predict the reference power of HESS to meet the load power demand. The two methods are analyzed and compared. In light of the energy imbalance existing between the lithium battery and super capacitor, we then design the second-level fuzzy logic controller for redistribution of power. The Matlab/Simulink models of MVDC system, HESS, constant power load and pulse load were established for simulation analysis.[Results] The simulation results show that the fuzzy logic controller and PI controller can predict the required power of the system according to the state of the MVDC system, and the fuzzy logic control strategy is superior to PI control strategy. The second-level fuzzy logic controller can redistribute the power reasonably based on the state of charge between the lithium battery pack and the supercapacitor bank.[Conclusions] The hybrid energy management strategy of the ship's MVDC system can maintain system power balance, suppress busbar fluctuations, improve system stability and survivability

    The complete chloroplast genome sequence of Myricaria elegans: an endemic species to the Himalayas

    No full text
    Myricaria elegans, an endemic species to the Himalayas, is a distinctive deciduous shrubbery plant-primarily distributed in the Qinghai-Tibet Plateau and adjacent regions in China. It is a kind of fuelwood, medicinal, and ecology-protecting woody plant species. In this study, the whole chloroplast (cp) genome sequence of M. elegans was assembled and characterized by high-throughput sequencing data. The complete cp genome of M. elegans was 155,245 bp in length with a GC content of 37.4%. It contained a large single-copy region (LSC) of 84,846 bp, and a small single-copy region (SSC) of 18,290 bp, which were separated by a pair of 26,053 bp inverted repeat regions (IRs). The cp genome of M. elegans was composed of 130 genes, including 85 protein-coding genes, 37 transfer RNA (tRNA) genes, and eight ribosomal RNA (rRNA) genes. Phylogenetic analysis revealed that M. elegans formed a clade with Myricaria, and it showed a close relationship with Myricaria prostrata

    Effects of Exogenous L-Asparagine on Poplar Biomass Partitioning and Root Morphology

    No full text
    L-Asparagine (Asn) has been regarded as one of the most economical molecules for nitrogen (N) storage and transport in plants due to its relatively high N-to-carbon (C) ratio (2:4) and stability. Although its internal function has been addressed, the biological role of exogenous Asn in plants remains elusive. In this study, different concentrations (0.5, 1, 2, or 5 mM) of Asn were added to the N-deficient hydroponic solution for poplar ‘Nanlin895’. Morphometric analyses showed that poplar height, biomass, and photosynthesis activities were significantly promoted by Asn treatment compared with the N-free control. Moreover, the amino acid content, total N and C content, and nitrate and ammonia content were dramatically altered by Asn treatment. Moreover, exogenous Asn elicited root growth inhibition, accompanied by complex changes in the transcriptional pattern of genes and activities of enzymes associated with N and C metabolism. Combined with the plant phenotype and the physiological and biochemical indexes, our data suggest that poplar is competent to take up and utilize exogenous Asn dose-dependently. It provides valuable information and insight on how different forms of N and concentrations of Asn influence poplar root and shoot growth and function, and roles of Asn engaged in protein homeostasis regulation

    Transcriptome Analysis Reveals Critical Genes and Pathways in Carbon Metabolism and Ribosome Biogenesis in Poplar Fertilized with Glutamine

    No full text
    Exogenous Gln as a single N source has been shown to exert similar roles to the inorganic N in poplar ‘Nanlin895′ in terms of growth performance, yet the underlying molecular mechanism remains unclear. Herein, transcriptome analyses of both shoots (L) and roots (R) of poplar ‘Nanlin895’ fertilized with Gln (G) or the inorganic N (control, C) were performed. Compared with the control, 3109 differentially expressed genes (DEGs) and 5071 DEGs were detected in the GL and GR libraries, respectively. In the shoots, Gln treatment resulted in downregulation of a large number of ribosomal genes but significant induction of many starch and sucrose metabolism genes, demonstrating that poplars tend to distribute more energy to sugar metabolism rather than ribosome biosynthesis when fertilized with Gln-N. By contrast, in the roots, most of the DEGs were annotated to carbon metabolism, glycolysis/gluconeogenesis and phenylpropanoid biosynthesis, suggesting that apart from N metabolism, exogenous Gln has an important role in regulating the redistribution of carbon resources and secondary metabolites. Therefore, it can be proposed that the promotion impact of Gln on poplar growth and photosynthesis may result from the improvement of both carbon and N allocation, accompanied by an efficient energy switch for growth and stress responses

    Investigation of Vortex Rings for Free Jet and Synthetic Jet at Various Reynolds Numbers and Strouhal Numbers

    No full text
    The behaviors of vortex rings for free jet and synthetic jet with various Reynolds numbers and Strouhal numbers are numerically studied by the k-ε model. The positions of the leading vortex of free jet are investigated under the three different conditions, and the effect of Strouhal number on the vortex ring is analyzed in detail. The results show that different Reynolds numbers lead to different positions for the shedding of the vortex rings. During the movement of the vortex rings, the symmetry of the vortex ring in synthetic jet retains in good state, and the vortex rings do not break up with well-arranged distributions. The distance between two adjacent vortex rings near the synthetic jet exit has the close link between the Strouhal number yet is independent of the Reynolds numbers

    Thin, stretchable, universal wireless power transfer system for electric vehicle charging

    No full text
    Wireless power transfer technology has emerged as a new class of prospective components for electric vehicle charging. However, conventional wireless power transfer systems often suffer from unsatisfactory charging efficiency due to the comparatively longer recharge range and insufficient universality for various car models. Here, we present a stretchable wireless power transfer (SWPT) system that consists of thin and stretchable inductive coupling coils designed in serpentine shapes to provide stretchablility for the charging of any model. The receiving coil is adhered to the vehicle roof, and the transmitting coil hung over the vehicle is used to adjust the transmission distance. In order to improve the capability of coils, the design of windings is optimized to enhance stretchability and decrease the resistanceviafabricating treble strand serpentine copper traces. The results show that the charging efficiencies of the SWPT remain stable even though the coils are under bending and stretching. As an application demonstration, the SWPT system is installed on the roofs of two different model cars, respectively, and the results demonstrate that the charging efficiencies remain stable. Thus, this work paves a novel way to develop a stretchable, convenient, universal, and high-performance wireless power transfer system
    corecore