37,561 research outputs found

    A Direct Estimation of High Dimensional Stationary Vector Autoregressions

    Full text link
    The vector autoregressive (VAR) model is a powerful tool in modeling complex time series and has been exploited in many fields. However, fitting high dimensional VAR model poses some unique challenges: On one hand, the dimensionality, caused by modeling a large number of time series and higher order autoregressive processes, is usually much higher than the time series length; On the other hand, the temporal dependence structure in the VAR model gives rise to extra theoretical challenges. In high dimensions, one popular approach is to assume the transition matrix is sparse and fit the VAR model using the "least squares" method with a lasso-type penalty. In this manuscript, we propose an alternative way in estimating the VAR model. The main idea is, via exploiting the temporal dependence structure, to formulate the estimating problem into a linear program. There is instant advantage for the proposed approach over the lasso-type estimators: The estimation equation can be decomposed into multiple sub-equations and accordingly can be efficiently solved in a parallel fashion. In addition, our method brings new theoretical insights into the VAR model analysis. So far the theoretical results developed in high dimensions (e.g., Song and Bickel (2011) and Kock and Callot (2012)) mainly pose assumptions on the design matrix of the formulated regression problems. Such conditions are indirect about the transition matrices and not transparent. In contrast, our results show that the operator norm of the transition matrices plays an important role in estimation accuracy. We provide explicit rates of convergence for both estimation and prediction. In addition, we provide thorough experiments on both synthetic and real-world equity data to show that there are empirical advantages of our method over the lasso-type estimators in both parameter estimation and forecasting.Comment: 36 pages, 3 figur

    Handling Homographs in Neural Machine Translation

    Full text link
    Homographs, words with different meanings but the same surface form, have long caused difficulty for machine translation systems, as it is difficult to select the correct translation based on the context. However, with the advent of neural machine translation (NMT) systems, which can theoretically take into account global sentential context, one may hypothesize that this problem has been alleviated. In this paper, we first provide empirical evidence that existing NMT systems in fact still have significant problems in properly translating ambiguous words. We then proceed to describe methods, inspired by the word sense disambiguation literature, that model the context of the input word with context-aware word embeddings that help to differentiate the word sense be- fore feeding it into the encoder. Experiments on three language pairs demonstrate that such models improve the performance of NMT systems both in terms of BLEU score and in the accuracy of translating homographs.Comment: NAACL201

    Post-Regularization Inference for Time-Varying Nonparanormal Graphical Models

    Full text link
    We propose a novel class of time-varying nonparanormal graphical models, which allows us to model high dimensional heavy-tailed systems and the evolution of their latent network structures. Under this model, we develop statistical tests for presence of edges both locally at a fixed index value and globally over a range of values. The tests are developed for a high-dimensional regime, are robust to model selection mistakes and do not require commonly assumed minimum signal strength. The testing procedures are based on a high dimensional, debiasing-free moment estimator, which uses a novel kernel smoothed Kendall's tau correlation matrix as an input statistic. The estimator consistently estimates the latent inverse Pearson correlation matrix uniformly in both the index variable and kernel bandwidth. Its rate of convergence is shown to be minimax optimal. Our method is supported by thorough numerical simulations and an application to a neural imaging data set

    Learning Character-level Compositionality with Visual Features

    Full text link
    Previous work has modeled the compositionality of words by creating character-level models of meaning, reducing problems of sparsity for rare words. However, in many writing systems compositionality has an effect even on the character-level: the meaning of a character is derived by the sum of its parts. In this paper, we model this effect by creating embeddings for characters based on their visual characteristics, creating an image for the character and running it through a convolutional neural network to produce a visual character embedding. Experiments on a text classification task demonstrate that such model allows for better processing of instances with rare characters in languages such as Chinese, Japanese, and Korean. Additionally, qualitative analyses demonstrate that our proposed model learns to focus on the parts of characters that carry semantic content, resulting in embeddings that are coherent in visual space.Comment: Accepted to ACL 201
    corecore