39,000 research outputs found
Synthetic horizontal branch morphology for different metallicities and ages under tidally enhanced stellar wind
It is believed that, except for metallicity, some other parameters are needed
to explain the horizontal branch (HB) morphology of globular clusters (GCs).
Furthermore, these parameters are considered to be correlated with the mass
loss of the red giant branch (RGB) stars. In our previous work, we proposed
that tidally enhanced stellar wind during binary evolution may affect the HB
morphology by enhancing the mass loss of the red giant primary. As a further
study, we now investigate the effects of metallicity and age on HB morphology
by considering tidally enhanced stellar winds during binary evolution. We
incorporated the tidally enhanced-stellar-wind model into Eggleton's stellar
evolution code to study the binary evolution. To study the effects of
metallicity and age on our final results, we conducted two sets of model
calculations: (i) for a fixed age, we used three metallicities, namely
Z=0.0001, 0.001, and 0.02. (ii) For a fixed metallicity, Z=0.001, we used five
ages in our model calculations: 14, 13, 12, 10, and 7 Gyr. We found that HB
morphology of GCs becomes bluer with decreasing metallicity, and old GCs
present bluer HB morphology than young ones. These results are consistent with
previous work. Although the envelope-mass distributions of zero-age HB stars
produced by tidally enhanced stellar wind are similar for different
metallicities, the synthetic HB under tidally enhanced stellar wind for Z=0.02
presented a distinct gap between red and blue HB. However, this feature was not
seen clearly in the synthetic HB for Z=0.001 and 0.0001. We also found that
higher binary fractions may make HB morphology become bluer, and we discussed
the results with recent observations.Comment: 16 pages, 6 figures, 3 tables, accepted for publication in Astronomy
& Astrophysic
Binary Stellar Population Synthesis Model
Using Yunnan evolutionary population synthesis (EPS) models, we present
integrated colours, integrated spectral energy distributions (ISEDs) and
absorption-line indices defined by the Lick Observatory image dissector scanner
(Lick/IDS) system, for an extensive set of instantaneous-burst binary stellar
populations (BSPs) with interactions. By comparing the results for populations
with and without interactions we show that the inclusion of binary interactions
makes the appearance of the population substantially bluer. This effect raises
the derived age and metallicity of the population.
To be used in the studies of modern spectroscopic galaxy surveys at
intermediate/high spectral resolution, we also present intermediate- (3A) and
high-resolution (~0.3A) ISEDs and Lick/IDS absorption-line indices for BSPs. To
directly compare with observations the Lick/IDS absorption indices are also
presented by measuring them directly from the ISEDs.Comment: 2 pages 2 figure
Evolution of binary stars and its implications for evolutionary population synthesis
Most stars are members of binaries, and the evolution of a star in a close
binary system differs from that of an ioslated star due to the proximity of its
companion star. The components in a binary system interact in many ways and
binary evolution leads to the formation of many peculiar stars, including blue
stragglers and hot subdwarfs. We will discuss binary evolution and the
formation of blue stragglers and hot subdwarfs, and show that those hot objects
are important in the study of evolutionary population synthesis (EPS), and
conclude that binary interactions should be included in the study of EPS.
Indeed, binary interactions make a stellar population younger (hotter), and the
far-ultraviolet (UV) excess in elliptical galaxies is shown to be most likely
resulted from binary interactions. This has major implications for
understanding the evolution of the far-UV excess and elliptical galaxies in
general. In particular, it implies that the far-UV excess is not a sign of age,
as had been postulated prviously and predicts that it should not be strongly
dependent on the metallicity of the population, but exists universally from
dwarf ellipticals to giant ellipticals.Comment: Oral talk on IAUS 262, Brazi
The Effect of Binary Interactions in Infrared Passbands
We present the integrated J, H, K, L, M and N magnitudes and the colours
involving infrared bands, for an extensive set of instantaneous-burst binary
stellar populations (BSPs) by using evolutionary population synthesis (EPS). By
comparing the results for BSPs WITH and WITHOUT binary interactions we show
that the inclusion of binary interactions makes the magnitudes of populations
larger (fainter) and the integrated colours smaller (bluer) for t > 1Gyr. Also,
we compare our model magnitudes and colours with those of Bruzual & Charlot
(2003, hereafter BC03) and Maraston (2005, hereafter M05). At last, we compare
these model broad colours with Magellanic Clouds globular clusters (GCs) and
Milky Way GCs. In (V-R)-[Fe/H] and (V-I)-[Fe/H] diagrams it seems that our
models match the observations better than those of BC03 and M05.Comment: 2 page 3 figure
Constraints on SN Ia progenitor time delays from high-z SNe and the star formation history
We re-assess the question of a systematic time delay between the formation of
the progenitor and its explosion in a type Ia supernova (SN Ia) using the
Hubble Higher-z Supernova Search sample (Strolger et al. 2004). While the
previous analysis indicated a significant time delay, with a most likely value
of 3.4 Gyr, effectively ruling out all previously proposed progenitor models,
our analysis shows that the time-delay estimate is dominated by systematic
errors, in particular due to uncertainties in the star-formation history. We
find that none of the popular progenitor models under consideration can be
ruled out with any significant degree of confidence. The inferred time delay is
mainly determined by the peak in the assumed star-formation history. We show
that, even with a much larger Supernova sample, the time delay distribution
cannot be reliably reconstructed without better constraints on the
star-formation history.Comment: accepted for publication in MNRA
Binary interactions and UV photometry on photometric redshift
Using the Hyperz code (Bolzonella et al. 2000) we present photometric
redshift estimates for a random sample of galaxies selected from the SDSS/DR7
and GALEX/DR4, for which spectroscopic redshifts are also available.
We confirm that the inclusion of ultraviolet photometry improves the accuracy
of photo-zs for those galaxies with g*-r* < 0.7 and z_spec < 0.2. We also
address the problem of how binary interactions can affect photo-z estimates,
and find that their effect is negligible.Comment: 2 pages 1 figure
Birthrates and delay times of Type Ia supernovae
Type Ia supernovae (SNe Ia) play an important role in diverse areas of
astrophysics, from the chemical evolution of galaxies to observational
cosmology. However, the nature of the progenitors of SNe Ia is still unclear.
In this paper, according to a detailed binary population synthesis study, we
obtained SN Ia birthrates and delay times from different progenitor models, and
compared them with observations. We find that the Galactic SN Ia birthrate from
the double-degenerate (DD) model is close to those inferred from observations,
while the birthrate from the single-degenerate (SD) model accounts for only
about 1/2-2/3 of the observations. If a single starburst is assumed, the
distribution of the delay times of SNe Ia from the SD model is a weak
bimodality, where the WD + He channel contributes to the SNe Ia with delay
times shorter than 100Myr, and the WD + MS and WD + RG channels to those with
age longer than 1Gyr.Comment: 11 pages, 2 figures, accepted by Science in China Series G (Dec.30,
2009
Stellar adiabatic mass loss model and applications
Roche-lobe overflow and common envelope evolution are very important in
binary evolution, which is believed to be the main evolutionary channel to hot
subdwarf stars. The details of these processes are difficult to model, but
adiabatic expansion provides an excellent approximation to the structure of a
donor star undergoing dynamical time scale mass transfer. We can use this model
to study the responses of stars of various masses and evolutionary stages as
potential donor stars, with the urgent goal of obtaining more accurate
stability criteria for dynamical mass transfer in binary population synthesis
studies. As examples, we describe here several models with the initial masses
equal to 1 Msun and 10 Msun, and identify potential limitations to the use of
our results for giant-branch stars.Comment: 7 pages, 5 figures,Accepted for publication in AP&SS, Special issue
Hot Sub-dwarf Stars, in Han Z., Jeffery S., Podsiadlowski Ph. ed
- …