26,728 research outputs found
Rumba : a Python framework for automating large-scale recursive internet experiments on GENI and FIRE+
It is not easy to design and run Convolutional Neural Networks (CNNs) due to: 1) finding the optimal number of filters (i.e., the width) at each layer is tricky, given an architecture; and 2) the computational intensity of CNNs impedes the deployment on computationally limited devices. Oracle Pruning is designed to remove the unimportant filters from a well-trained CNN, which estimates the filters’ importance by ablating them in turn and evaluating the model, thus delivers high accuracy but suffers from intolerable time complexity, and requires a given resulting width but cannot automatically find it. To address these problems, we propose Approximated Oracle Filter Pruning (AOFP), which keeps searching for the least important filters in a binary search manner, makes pruning attempts by masking out filters randomly, accumulates the resulting errors, and finetunes the model via a multi-path framework. As AOFP enables simultaneous pruning on multiple layers, we can prune an existing very deep CNN with acceptable time cost, negligible accuracy drop, and no heuristic knowledge, or re-design a model which exerts higher accuracy and faster inferenc
Generalized Spinfoams
We reconsider the spinfoam dynamics that has been recently introduced, in the
generalized Kaminski-Kisielowski-Lewandowski (KKL) version where the foam is
not dual to a triangulation. We study the Euclidean as well as the Lorentzian
case. We show that this theory can still be obtained as a constrained BF theory
satisfying the simplicity constraint, now discretized on a general oriented
2-cell complex. This constraint implies that boundary states admit a (quantum)
geometrical interpretation in terms of polyhedra, generalizing the tetrahedral
geometry of the simplicial case. We also point out that the general solution to
this constraint (imposed weakly) depends on a quantum number r_f in addition to
those of loop quantum gravity. We compute the vertex amplitude and recover the
KKL amplitude in the Euclidean theory when r_f=0. We comment on the eventual
physical relevance of r_f, and the formal way to eliminate it.Comment: 16 pages, 3 figure
LHC Phenomenology of Type II Seesaw: Nondegenerate Case
In this paper, we thoroughly investigate the LHC phenomenology of the type II
seesaw mechanism for neutrino masses in the nondegenerate case where the
triplet scalars of various charge () have
different masses. Compared with the degenerate case, the cascade decays of
scalars lead to many new, interesting signal channels. In the positive scenario
where , the four-lepton signal is still
the most promising discovery channel for the doubly-charged scalars
. The five-lepton signal is crucial to probe the mass spectrum of
the scalars, for which, for example, a reach at 14 TeV LHC for
with requires an integrated
luminosity of 76/fb. And the six-lepton signal can be used to probe the neutral
scalars , which are usually hard to detect in the degenerate case. In
the negative scenario where , the
detection of is more challenging, when the cascade decay
is dominant. The most important channel is the
associated production in the final state
, which requires a luminosity of 109/fb
for a discovery, while the final state
is less promising. Moreover, the
associated production can give same signals as the standard model
Higgs pair production. With a much larger cross section, the
production in the final state could reach
significance at 14 TeV LHC with a luminosity of 300/fb. In summary, with an
integrated luminosity of order 500/fb, the triplet scalars can be fully
reconstructed at 14 TeV LHC in the negative scenario.Comment: 41 pages, 20 figures, 7 tables. Version 2 accepted by PRD. 41 pages,
18 figures. Main changes are, (1) rewording in secs III and IV, removing 2
figs and quoting ref [34]; (2) a paragraph added before eq (10) to clarify
constraints from electroweak precision data; (3) a paper added to ref [11].
No changes in result
- …