69,455 research outputs found
Prediction of vertical bearing capacity of waveform micropile
This study proposes a predictive equation for bearing capacity considering the behaviour characteristics of a waveform micropile that can enhance the bearing capacity of a conventional micropile. The bearing capacity of the waveform micropile was analysed by a three-dimensional numerical model with soil and pile conditions obtained from the field and centrifuge tests. The load-transfer mechanism of the waveform micropile was revealed by the numerical analyses, and a new predictive equation for the bearing capacity was proposed. The bearing capacities of the waveform micropile calculated by the new equation were comparable with those measured from the field and centrifuge tests. This validated a prediction potential of the new equation for bearing capacity of waveform micropiles
The Sender-Excited Secret Key Agreement Model: Capacity, Reliability and Secrecy Exponents
We consider the secret key generation problem when sources are randomly
excited by the sender and there is a noiseless public discussion channel. Our
setting is thus similar to recent works on channels with action-dependent
states where the channel state may be influenced by some of the parties
involved. We derive single-letter expressions for the secret key capacity
through a type of source emulation analysis. We also derive lower bounds on the
achievable reliability and secrecy exponents, i.e., the exponential rates of
decay of the probability of decoding error and of the information leakage.
These exponents allow us to determine a set of strongly-achievable secret key
rates. For degraded eavesdroppers the maximum strongly-achievable rate equals
the secret key capacity; our exponents can also be specialized to previously
known results.
In deriving our strong achievability results we introduce a coding scheme
that combines wiretap coding (to excite the channel) and key extraction (to
distill keys from residual randomness). The secret key capacity is naturally
seen to be a combination of both source- and channel-type randomness. Through
examples we illustrate a fundamental interplay between the portion of the
secret key rate due to each type of randomness. We also illustrate inherent
tradeoffs between the achievable reliability and secrecy exponents. Our new
scheme also naturally accommodates rate limits on the public discussion. We
show that under rate constraints we are able to achieve larger rates than those
that can be attained through a pure source emulation strategy.Comment: 18 pages, 8 figures; Submitted to the IEEE Transactions on
Information Theory; Revised in Oct 201
Stokes Parameters as a Minkowskian Four-vector
It is noted that the Jones-matrix formalism for polarization optics is a
six-parameter two-by-two representation of the Lorentz group. It is shown that
the four independent Stokes parameters form a Minkowskian four-vector, just
like the energy-momentum four-vector in special relativity. The optical filters
are represented by four-by-four Lorentz-transformation matrices. This
four-by-four formalism can deal with partial coherence described by the Stokes
parameters. A four-by-four matrix formulation is given for decoherence effects
on the Stokes parameters, and a possible experiment is proposed. It is shown
also that this Lorentz-group formalism leads to optical filters with a symmetry
property corresponding to that of two-dimensional Euclidean transformations.Comment: RevTeX, 22 pages, no figures, submitted to Phys. Rev.
- âŠ