69,455 research outputs found

    Random beamforming OFDMA for future generation cellular communication systems

    Get PDF

    Layered random beamforming OFDMA with fair scheduling algorithms

    Get PDF

    Prediction of vertical bearing capacity of waveform micropile

    Get PDF
    This study proposes a predictive equation for bearing capacity considering the behaviour characteristics of a waveform micropile that can enhance the bearing capacity of a conventional micropile. The bearing capacity of the waveform micropile was analysed by a three-dimensional numerical model with soil and pile conditions obtained from the field and centrifuge tests. The load-transfer mechanism of the waveform micropile was revealed by the numerical analyses, and a new predictive equation for the bearing capacity was proposed. The bearing capacities of the waveform micropile calculated by the new equation were comparable with those measured from the field and centrifuge tests. This validated a prediction potential of the new equation for bearing capacity of waveform micropiles

    Performance analysis of layered random beamforming OFMDA with feedback reduction

    Get PDF

    The Sender-Excited Secret Key Agreement Model: Capacity, Reliability and Secrecy Exponents

    Full text link
    We consider the secret key generation problem when sources are randomly excited by the sender and there is a noiseless public discussion channel. Our setting is thus similar to recent works on channels with action-dependent states where the channel state may be influenced by some of the parties involved. We derive single-letter expressions for the secret key capacity through a type of source emulation analysis. We also derive lower bounds on the achievable reliability and secrecy exponents, i.e., the exponential rates of decay of the probability of decoding error and of the information leakage. These exponents allow us to determine a set of strongly-achievable secret key rates. For degraded eavesdroppers the maximum strongly-achievable rate equals the secret key capacity; our exponents can also be specialized to previously known results. In deriving our strong achievability results we introduce a coding scheme that combines wiretap coding (to excite the channel) and key extraction (to distill keys from residual randomness). The secret key capacity is naturally seen to be a combination of both source- and channel-type randomness. Through examples we illustrate a fundamental interplay between the portion of the secret key rate due to each type of randomness. We also illustrate inherent tradeoffs between the achievable reliability and secrecy exponents. Our new scheme also naturally accommodates rate limits on the public discussion. We show that under rate constraints we are able to achieve larger rates than those that can be attained through a pure source emulation strategy.Comment: 18 pages, 8 figures; Submitted to the IEEE Transactions on Information Theory; Revised in Oct 201

    Stokes Parameters as a Minkowskian Four-vector

    Get PDF
    It is noted that the Jones-matrix formalism for polarization optics is a six-parameter two-by-two representation of the Lorentz group. It is shown that the four independent Stokes parameters form a Minkowskian four-vector, just like the energy-momentum four-vector in special relativity. The optical filters are represented by four-by-four Lorentz-transformation matrices. This four-by-four formalism can deal with partial coherence described by the Stokes parameters. A four-by-four matrix formulation is given for decoherence effects on the Stokes parameters, and a possible experiment is proposed. It is shown also that this Lorentz-group formalism leads to optical filters with a symmetry property corresponding to that of two-dimensional Euclidean transformations.Comment: RevTeX, 22 pages, no figures, submitted to Phys. Rev.
    • 

    corecore