89,060 research outputs found

    Transcendental Aspects, Ontological Commitments and Naturalistic Elements in Nietzsche's Thought

    Get PDF
    Nietzsche's views on knowledge have been interpreted in at least three incompatible ways - as transcendental, naturalistic or proto-deconstructionist. While the first two share a commitment to the possibility of objective truth, the third reading denies this by highlighting Nietzsche's claims about the necessarily falsifying character of human knowledge (his so-called error theory). This paper examines the ways in which his work can be construed as seeking ways of overcoming the strict opposition between naturalism and transcendental philosophy whilst fully taking into account the error theory (interpreted non-literally, as a hyperbolic warning against uncritical forms of realism). In doing so, it clarifies the nature of Nietzsche's ontological commitments, both in the early and the later work, and shows that his relation to transcendental idealism is more subtle than is allowed by naturalistic interpreters while conversely accounting for the impossibility of conceiving the conditions of the possibility of knowledge as genuinely a priori

    Dedicated hippocampal inhibitory networks for locomotion and immobility

    Get PDF
    Network activity is strongly tied to animal movement; however, hippocampal circuits selectively engaged during locomotion or immobility remain poorly characterized. Here we examined whether distinct locomotor states are encoded differentially in genetically defined classes of hippocampal interneurons. To characterize the relationship between interneuron activity and movement, we usedin vivo, two-photon calcium imaging in CA1 of male and female mice, as animals performed a virtual-reality (VR) track running task. We found that activity in most somatostatin-expressing and parvalbumin-expressing interneurons positively correlated with locomotion. Surprisingly, nearly one in five somatostatin or one in seven parvalbumin interneurons were inhibited during locomotion and activated during periods of immobility. Anatomically, the somata of somatostatin immobility-activated neurons were smaller than those of movement-activated neurons. Furthermore, immobility-activated interneurons were distributed across cell layers, with somatostatin-expressing cells predominantly in stratum oriens and parvalbumin-expressing cells mostly in stratum pyramidale. Importantly, each cell's correlation between activity and movement was stable both over time and across VR environments. Our findings suggest that hippocampal interneuronal microcircuits are preferentially active during either movement or immobility periods. These inhibitory networks may regulate information flow in “labeled lines” within the hippocampus to process information during distinct behavioral states.SIGNIFICANCE STATEMENTThe hippocampus is required for learning and memory. Movement controls network activity in the hippocampus but it's unclear how hippocampal neurons encode movement state. We investigated neural circuits active during locomotion and immobility and found interneurons were selectively active during movement or stopped periods, but not both. Each cell's response to locomotion was consistent across time and environments, suggesting there are separate dedicated circuits for processing information during locomotion and immobility. Understanding how the hippocampus switches between different network configurations may lead to therapeutic approaches to hippocampal-dependent dysfunctions, such as Alzheimer's disease or cognitive decline.</jats:p

    Optical properties of Mn4+ ions in GaN:Mn codoped with Mg acceptors

    Full text link
    The optical properties of Mn-Mg codoped epitaxial GaN were studied. Addition of Mg acceptors quenches the weak manganese-related photoluminescence (PL) band at 1.3 eV in GaN:Mn and a series of sharp PL peaks are observed at 1 eV in codoped epilayers. The change in PL spectra indicates that Mg addition stabilizes the Mn4+ charge state by decreasing the Fermi level. The 1 eV PL peaks are tentatively attributed to intra center transitions involving Mn4+ ions. Spin allowed 3d-shell 4T2-4T1 transitions and their phonon replicas are involved. The relative intensities of the sharp peaks are strongly dependent on the excitation wavelength, indicating the optically active Mn4+ centers involved in the separate peaks are different. The temperature dependence of the PL spectrum suggests the presence of at least three distinct Mn4+ complex centers.Comment: 14 pages, 3 figures, 1 table, accepted by Appl. Phys. Let

    Emergence of Topological and Strongly Correlated Ground States in trapped Rashba Spin-Orbit Coupled Bose Gases

    Full text link
    We theoretically study an interacting few-body system of Rashba spin-orbit coupled two-component Bose gases confined in a harmonic trapping potential. We solve the interacting Hamiltonian at large Rashba coupling strengths using Exact Diagonalization scheme, and obtain the ground state phase diagram for a range of interatomic interactions and particle numbers. At small particle numbers, we observe that the bosons condense to an array of topological states with n+1/2 quantum angular momentum vortex configurations, where n = 0, 1, 2, 3... At large particle numbers, we observe two distinct regimes: at weaker interaction strengths, we obtain ground states with topological and symmetry properties that are consistent with mean-field theory computations; at stronger interaction strengths, we report the emergence of strongly correlated ground states.Comment: 14 pages, 9 figure
    corecore