152 research outputs found

    Effect of Intensity Modulator Extinction on Practical Quantum Key Distribution System

    Full text link
    We study how the imperfection of intensity modulator effects on the security of a practical quantum key distribution system. The extinction ratio of the realistic intensity modulator is considered in our security analysis. We show that the secret key rate increases, under the practical assumption that the indeterminable noise introduced by the imperfect intensity modulator can not be controlled by the eavesdropper.Comment: 6 pages, 5 figures. EPJD accepte

    Partial Wave Analysis of J/Ïˆâ†’Îł(K+K−π+π−)J/\psi \to \gamma (K^+K^-\pi^+\pi^-)

    Full text link
    BES data on J/Ïˆâ†’Îł(K+K−π+π−)J/\psi \to \gamma (K^+K^-\pi^+\pi^-) are presented. The K∗Kˉ∗K^*\bar K^* contribution peaks strongly near threshold. It is fitted with a broad 0−+0^{-+} resonance with mass M=1800±100M = 1800 \pm 100 MeV, width Γ=500±200\Gamma = 500 \pm 200 MeV. A broad 2++2^{++} resonance peaking at 2020 MeV is also required with width ∌500\sim 500 MeV. There is further evidence for a 2−+2^{-+} component peaking at 2.55 GeV. The non-K∗Kˉ∗K^*\bar K^* contribution is close to phase space; it peaks at 2.6 GeV and is very different from K∗K∗ˉK^{*}\bar{K^{*}}.Comment: 15 pages, 6 figures, 1 table, Submitted to PL

    Creation and annihilation of topological meron pairs in in-plane magnetized films

    Get PDF
    Merons which are topologically equivalent to one-half of skyrmions can exist only in pairs or groups in two-dimensional (2D) ferromagnetic (FM) systems. The recent discovery of meron lattice in chiral magnet Co8Zn9Mn3 raises the immediate challenging question that whether a single meron pair, which is the most fundamental topological structure in any 2D meron systems, can be created and stabilized in a continuous FM film? Utilizing winding number conservation, we develop a new method to create and stabilize a single pair of merons in a continuous Py film by local vortex imprinting from a Co disk. By observing the created meron pair directly within a magnetic field, we determine its topological structure unambiguously and explore the topological effect in its creation and annihilation processes. Our work opens a pathway towards developing and controlling topological structures in general magnetic systems without the restriction of perpendicular anisotropy and Dzyaloshinskii–Moriya interaction. © 2019, The Author(s).1

    Measurements of J/psi --> p \bar{p}

    Full text link
    The process J/\psi --> p \bar{p} is studied using 57.7 X 10^6 J/\psi events collected with the BESII detector at the Beijing Electron Positron Collider. The branching ratio is determined to be Br(J/\psi --> p \bar{p})=(2.26 +- 0.01 +- 0.14) X 10^{-3}, and the angular distribution is well described by \frac{dN}{d cos\theta_p}=1+\alpha\cos^2\theta_p with \alpha = 0.676 +- 0.036 +- 0.042, where \theta_p is the angle between the proton and beam directions. The value of \alpha obtained is in good agreement with the predictions of first-order QCD.Comment: 6 pages, 2 figures, RevTex4, Submitted to Phys.Lett.

    Search for K_S K_S in J/psi and psi(2S) decays

    Get PDF
    The CP violating processes J/psi-->K_S K_S and psi(2S)-->K_S K_S are searched for using samples of 58 million J/psi and 14 million psi(2S) events collected with the Beijing Spectrometer at the Beijing Electron Positron Collider. No signal is observed, and upper limits on the decay branching ratios are determined to be BR(J/psi-->K_S K_S) K_S K_S) < 4.6x10^{-6} at the 95% confidence level.Comment: 6 pages, 4 figures, submitted to Phys. Lett.

    A Study of J/psi-->gamma gamma V(rho,phi) Decays with the BESII Detector

    Full text link
    Using a sample of 58×10658\times 10^6 J/ψJ/\psi events collected with the BESII detector, radiative decays J/Ïˆâ†’ÎłÎłVJ/\psi\to\gamma\gamma V, where V=ρV=\rho or ϕ\phi, are studied. A resonance around 1420 MeV/c2^2 (X(1424)) is observed in the ÎłÏ\gamma\rho mass spectrum. Its mass and width are measured to be 1424±10(stat)±11(sys)1424\pm 10(stat)\pm 11(sys) MeV/c2^2 and 101.0±8.8±8.8 101.0\pm 8.8 \pm 8.8 MeV/c2^2, respectively, and its branching ratio B(J/Ïˆâ†’ÎłX(1424)â†’ÎłÎłÏ)B(J/\psi\to \gamma X(1424)\to \gamma \gamma \rho) is determined to be (1.07±0.17±0.11)×10−4(1.07\pm0.17 \pm 0.11)\times 10^{-4}. A search for X(1424)â†’ÎłÏ•X(1424)\to \gamma\phi yields a 95% C.L. upper limit B(J/Ïˆâ†’ÎłX(1424)â†’ÎłÎłÏ•)<0.82×10−4B(J/\psi\to \gamma X(1424)\to \gamma\gamma \phi) < 0.82 \times 10^{-4}.Comment: 10 pages, 5 figures, submitted to PL

    Modern temporal network theory: A colloquium

    Full text link
    The power of any kind of network approach lies in the ability to simplify a complex system so that one can better understand its function as a whole. Sometimes it is beneficial, however, to include more information than in a simple graph of only nodes and links. Adding information about times of interactions can make predictions and mechanistic understanding more accurate. The drawback, however, is that there are not so many methods available, partly because temporal networks is a relatively young field, partly because it more difficult to develop such methods compared to for static networks. In this colloquium, we review the methods to analyze and model temporal networks and processes taking place on them, focusing mainly on the last three years. This includes the spreading of infectious disease, opinions, rumors, in social networks; information packets in computer networks; various types of signaling in biology, and more. We also discuss future directions.Comment: Final accepted versio
    • 

    corecore