16,473 research outputs found

    Listen-and-Talk: Full-duplex Cognitive Radio Networks

    Full text link
    In traditional cognitive radio networks, secondary users (SUs) typically access the spectrum of primary users (PUs) by a two-stage "listen-before-talk" (LBT) protocol, i.e., SUs sense the spectrum holes in the first stage before transmit in the second stage. In this paper, we propose a novel "listen-and-talk" (LAT) protocol with the help of the full-duplex (FD) technique that allows SUs to simultaneously sense and access the vacant spectrum. Analysis of sensing performance and SU's throughput are given for the proposed LAT protocol. And we find that due to self-interference caused by FD, increasing transmitting power of SUs does not always benefit to SU's throughput, which implies the existence of a power-throughput tradeoff. Besides, though the LAT protocol suffers from self-interference, it allows longer transmission time, while the performance of the traditional LBT protocol is limited by channel spatial correction and relatively shorter transmission period. To this end, we also present an adaptive scheme to improve SUs' throughput by switching between the LAT and LBT protocols. Numerical results are provided to verify the proposed methods and the theoretical results.Comment: in proceeding of IEEE Globecom 201

    Full-duplex MAC Protocol Design and Analysis

    Full text link
    The idea of in-band full-duplex (FD) communications revives in recent years owing to the significant progress in the self-interference cancellation and hardware design techniques, offering the potential to double spectral efficiency. The adaptations in upper layers are highly demanded in the design of FD communication systems. In this letter, we propose a novel medium access control (MAC) using FD techniques that allows transmitters to monitor the channel usage while transmitting, and backoff as soon as collision happens. Analytical saturation throughput of the FD-MAC protocol is derived with the consideration of imperfect sensing brought by residual self- interference (RSI) in the PHY layer. Both analytical and simulation results indicate that the normalized saturation throughput of the proposed FD-MAC can significantly outperforms conventional CSMA/CA under various network conditions

    Full-Duplex Cognitive Radio: A New Design Paradigm for Enhancing Spectrum Usage

    Full text link
    With the rapid growth of demand for ever-increasing data rate, spectrum resources have become more and more scarce. As a promising technique to increase the efficiency of the spectrum utilization, cognitive radio (CR) technique has the great potential to meet such a requirement by allowing un-licensed users to coexist in licensed bands. In conventional CR systems, the spectrum sensing is performed at the beginning of each time slot before the data transmission. This unfortunately results in two major problems: 1) transmission time reduction due to sensing, and 2) sensing accuracy impairment due to data transmission. To tackle these problems, in this paper we present a new design paradigm for future CR by exploring the full-duplex (FD) techniques to achieve the simultaneous spectrum sensing and data transmission. With FD radios equipped at the secondary users (SUs), SUs can simultaneously sense and access the vacant spectrum, and thus, significantly improve sensing performances and meanwhile increase data transmission efficiency. The aim of this article is to transform the promising conceptual framework into the practical wireless network design by addressing a diverse set of challenges such as protocol design and theoretical analysis. Several application scenarios with FD enabled CR are elaborated, and key open research directions and novel algorithms in these systems are discussed

    Listen-and-Talk: Protocol Design and Analysis for Full-duplex Cognitive Radio Networks

    Full text link
    In traditional cognitive radio networks, secondary users (SUs) typically access the spectrum of primary users (PUs) by a two-stage "listen-before-talk" (LBT) protocol, i.e., SUs sense the spectrum holes in the first stage before transmitting in the second. However, there exist two major problems: 1) transmission time reduction due to sensing, and 2) sensing accuracy impairment due to data transmission. In this paper, we propose a "listen-and-talk" (LAT) protocol with the help of full-duplex (FD) technique that allows SUs to simultaneously sense and access the vacant spectrum. Spectrum utilization performance is carefully analyzed, with the closed-form spectrum waste ratio and collision ratio with the PU provided. Also, regarding the secondary throughput, we report the existence of a tradeoff between the secondary transmit power and throughput. Based on the power-throughput tradeoff, we derive the analytical local optimal transmit power for SUs to achieve both high throughput and satisfying sensing accuracy. Numerical results are given to verify the proposed protocol and the theoretical results

    Prediction-error of Prediction Error (PPE)-based Reversible Data Hiding

    Full text link
    This paper presents a novel reversible data hiding (RDH) algorithm for gray-scaled images, in which the prediction-error of prediction error (PPE) of a pixel is used to carry the secret data. In the proposed method, the pixels to be embedded are firstly predicted with their neighboring pixels to obtain the corresponding prediction errors (PEs). Then, by exploiting the PEs of the neighboring pixels, the prediction of the PEs of the pixels can be determined. And, a sorting technique based on the local complexity of a pixel is used to collect the PPEs to generate an ordered PPE sequence so that, smaller PPEs will be processed first for data embedding. By reversibly shifting the PPE histogram (PPEH) with optimized parameters, the pixels corresponding to the altered PPEH bins can be finally modified to carry the secret data. Experimental results have implied that the proposed method can benefit from the prediction procedure of the PEs, sorting technique as well as parameters selection, and therefore outperform some state-of-the-art works in terms of payload-distortion performance when applied to different images.Comment: There has no technical difference to previous versions, but rather some minor word corrections. A 2-page summary of this paper was accepted by ACM IH&MMSec'16 "Ongoing work session". My homepage: hzwu.github.i
    • …
    corecore