245 research outputs found

    Exotic orbits due to spin-spin coupling around Kerr black holes

    Full text link
    We report exotic orbital phenomena of spinning test particles orbiting around a Kerr black hole, i.e., some orbits of spinning particles are asymmetrical about the equatorial plane. When a nonspinning test particle orbits around a Kerr black hole in a strong field region, due to relativistic orbital precessions, the pattern of trajectories is symmetrical about the equatorial plane of the Kerr black hole. However, the patterns of the spinning particles' orbit are no longer symmetrical about the equatorial plane for some orbital configurations and large spins. We argue that these asymmetrical patterns come from the spin-spin interactions between spinning particles and Kerr black holes, because the directions of spin-spin forces can be arbitrary, and distribute asymmetrically about the equatorial plane.Comment: 15 pages, 20 figure

    Determining the nature of white dwarfs from low-frequency gravitational waves

    Full text link
    An extreme-mass-ratio system composed of a white dwarf (WD) and a massive black hole can be observed by the low-frequency gravitational wave detectors, such as the Laser Interferometer Space Antenna (LISA). When the mass of the black hole is around 104∼105MβŠ™10^4 \sim 10^5 M_\odot, the WD will be disrupted by the tidal interaction at the final inspiraling stage. The event position and time of the tidal disruption of the WD can be accurately determined by the gravitational wave signals. Such position and time depend upon the mass of the black hole and especially on the density of the WD. We present the theory by using LISA-like gravitational wave detectors, the mass-radius relation and then the equations of state of WDs could be strictly constrained (accuracy up to 0.1%0.1\%). We also point out that LISA can accurately predict the disruption time of a WD, and forecast the electromagnetic follow-up of this tidal disruption event.Comment: 7 pages, 2 figure

    The gravitational time delay in the field of a slowly moving body with arbitrary multipoles

    Full text link
    We calculate the time delay of light in the gravitational field of a slowly moving body with arbitrary multipoles (mass and spin multipole moments) by the Time-Transfer-Function (TTF) formalism. The parameters we use, first introduced by Kopeikin for a gravitational source at rest, make the integration of the TTF very elegant and simple. Results completely coincide with expressions from the literature. The results for a moving body (with constant velocity) with complete multipole-structure are new, according to our knowledge.Comment: 9 pages, no figure

    Electromagnetic and gravitational radiation from the coherent oscillation of electron-positron pairs and fields

    Full text link
    Integrating equations of particle-number and energy-momentum conservation and Maxwell field equations, we study the oscillation and drift of electron and positron pairs coherently with fields after these pairs are produced in external electromagnetic fields. From the electric current of oscillating pairs, we obtain the energy spectrum of electromagnetic dipole radiation. This narrow spectrum is so peculiar that the detection of such radiation can identify pair production and oscillation in strong laser fields. We also obtain the energy spectrum of gravitational quadrapole radiation from the energy-momentum tensor of oscillating pairs and fields. Thus, we discuss the generation of gravitational waves on the basis of rapid development of strong laser fields.Comment: 6 pages, 4 figure

    Gravitational waves with dark matter minispikes: the combined effect

    Full text link
    It was shown that the dark matter(DM) minihalo around an intermediate mass black hole(IMBH) can be redistributed into a cusp, called the DM minispike. We consider an intermediate-mass-ratio inspiral consisting of an IMBH harbored in a DM minispike with nonannihilating DM particles and a small black hole(BH) orbiting around it. We investigate gravitational waves(GWs) produced by this system and analyze the waveforms with the comprehensive consideration of gravitational pull, dynamical friction and accretion of the minispike and calculate the time difference and phase difference caused by it. We find that for a certain range of frequency, the inspiralling time of the system is dramatically reduced for smaller central IMBH and large density of DM. For the central IMBH with 105MβŠ™10^5M_\odot, the time of merger is ahead, which can be distinguished by LISA, Taiji and Tianqin. We focus on the effect of accretion and compare it with that of gravitational pull and friction. We find that the accretion mass is a small quantity compared to the initial mass of the small BH and the accretion effect is inconspicuous compared with friction. However, the accumulated phase shift caused by accretion is large enough to be detected by LISA, Taiji and Tianqin, which indicate that the accretion effect can not be ignored in the detection of GWs.Comment: 10 pages, 14 figure

    Chaos and dynamics of spinning particles in Kerr spacetime

    Full text link
    We study chaos dynamics of spinning particles in Kerr spacetime of rotating black holes use the Papapetrou equations by numerical integration. Because of spin, this system exists many chaos solutions, and exhibits some exceptional dynamic character. We investigate the relations between the orbits chaos and the spin magnitude S, pericenter, polar angle and Kerr rotation parameter a by means of a kind of brand new Fast Lyapulov Indicator (FLI) which is defined in general relativity. The classical definition of Lyapulov exponent (LE) perhaps fails in curve spacetime. And we emphasize that the Poincar\'e sections cannot be used to detect chaos for this case. Via calculations, some new interesting conclusions are found: though chaos is easier to emerge with bigger S, but not always depends on S monotonically; the Kerr parameter a has a contrary action on the chaos occurrence. Furthermore, the spin of particles can destroy the symmetry of the orbits about the equatorial plane. And for some special initial conditions, the orbits have equilibrium points.Comment: 17 pages, 12 figure
    • …
    corecore